
Keynote

MESCONF 2016, Munich

October 6, 2016

Peter Fritzson
peter.fritzson@liu.se

Director of Open Source ModelicaConsortium
Vice Chairman of ModelicaAssociation

Professor at Linköping University

Modeling and Simulation of Cyber-physical Systems 

including Requirement Formalization using the 

OpenModelica MBSE Toolkit based on 

Modelica and partly on UML

mailto:peter.fritzson@liu.se


2

Industrial Challenges for Complex Cyber-Physical

System Products of both Software and Hardware

• Increased Software Fraction

• Shorter Time-to-Market

• Higher demands on effective 

strategic decision making

• Cyber-Physical (CPS) – Cyber (software)

Physical (hardware) products
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Open Source Model-Based Development  Environment

Covers Product-Design V – (OPENPROD  ITEA2 Project)
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Recent Big Modelica Book, 2014 (Warning! Commercial)

Peter Fritzson
Principles of Object Oriented 

Modeling and Simulation with 

Modelica 3.3:

A Cyber-Physical Approach

Can be ordered from Wiley or Amazon

Wiley-IEEE Press, 2014,    1250 pages

• OpenModelica
• www.openmodelica.org

• Modelica Association
• www.modelica.org

http://www.openmodelica.org/
http://www.modelica.org/
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Overview of this Talk

• Part I – Introduction to Modelica

• Part II – Introduction to the OpenModelica Open

Source MBSE Environment

• Part III – Dynamic verification/testing of formalized

requirements vs Models in MBSE

• Part IV – Dynamic debugging of equation-based

models

• Part V– New Project OPENCPS
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Part I

Introduction to Modelica
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Modelica Background:   Stored Knowledge

Model knowledge is stored in books and human 

minds which computers cannot access

“The change of motion is proportional 

to the motive force impressed “
– Newton
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Modelica Background:  The Form – Equations

• Equations were used in the third millennium B.C.

• Equality sign was introduced by Robert Recorde in 1557

Newton still wrote text (Principia, vol. 1, 1686)

“The change of motion is proportional to the motive force 

impressed ”
CSSL (1967) introduced a special form of “equation”:

variable = expression

v = INTEG(F)/m

Programming languages usually do not allow equations!
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What is Modelica?

• Robotics

• Automotive

• Aircrafts

• Satellites

• Power plants

• Systems biology

A language for modeling of complex cyber-physical systems
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What is Modelica?

A language for modeling of complex cyber-physical systems

Primary designed for simulation, but there are also other 

usages of models, e.g. optimization.
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What is Modelica?

A language for modeling of complex cyber-physical systems

i.e., Modelica is not a tool

Free, open language 

specification: 
There exist several free and commercial 

tools, for example:

• OpenModelica from OSMC

• Dymola from Dassault systems

• Wolfram System Modeler fr Wolfram MathCore

• SimulationX from ITI

• MapleSim from MapleSoft

• AMESIM from LMS

• JModelica.org from Modelon

• MWORKS from Tongyang Sw & Control

• IDA Simulation Env, from Equa

• ESI Group Modeling tool, ESI Group

Available at: www.modelica.org 

Developed and standardized

by Modelica Association
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Declarative language
Equations and mathematical functions allow acausal modeling, 

high level specification, increased correctness

Multi-domain modeling
Combine electrical, mechanical, thermodynamic, hydraulic, 

biological, control, event, real-time, etc...

Everything is a class
Strongly typed object-oriented language with a general class 

concept, Java & MATLAB-like syntax

Visual component programming
Hierarchical system architecture capabilities

Efficient, non-proprietary
Efficiency comparable to C; advanced equation compilation, 

e.g. 300 000 equations, ~150 000 lines on standard PC

Modelica – The Next Generation Modeling Language
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What is acausal modeling/design?

Why does it increase reuse?

The acausality makes Modelica library classes more  

reusable than traditional classes containing assignment 

statements where the input-output causality is fixed.

Example: a resistor equation:

R*i = v;

can be used in three ways:

i := v/R;

v := R*i;

R := v/i;

Modelica Acausal Modeling
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What is Special about Modelica?

• Multi-Domain Modeling

• Visual acausal hierarchical component modeling

• Typed declarative equation-based textual language

• Hybrid modeling and simulation
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What is Special about Modelica?

Multi-Domain

Modeling

Cyber-Physical Modeling

Physical

Cyber

3 domains

- electric

- mechanics

- control
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What is Special about Modelica?

Multi-Domain

Modeling

Acausal model

(Modelica)

Causal 

block-based

model

(Simulink)

Keeps the physical 

structure

Visual Acausal

Hierarchical 

Component 

Modeling
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What is Special about Modelica?

Visual Acausal

Hierarchical 

Component 

Modeling

Multi-Domain

Modeling

Hierarchical system

modeling

Courtesy of Martin Otter

Srel = n*transpose(n)+(identity(3)- n*transpose(n))*cos(q)-

skew(n)*sin(q);

wrela = n*qd;

zrela = n*qdd;

Sb = Sa*transpose(Srel);

r0b = r0a;

vb = Srel*va;

wb = Srel*(wa + wrela);

ab = Srel*aa;

zb = Srel*(za + zrela + cross(wa, wrela));
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What is Special about Modelica?

Multi-Domain

Modeling

Typed

Declarative

Equation-based 

Textual Language

A textual class-based language

OO primary used for as a structuring concept 

Behaviour described declaratively using

• Differential algebraic equations (DAE) (continuous-time) 

• Event triggers (discrete-time) 

class VanDerPol  "Van der Pol oscillator model"

Real x(start = 1)  "Descriptive string for x”; 

Real y(start = 1)  "y coordinate”;            

parameter Real lambda = 0.3;

equation

der(x) = y;                  

der(y) = -x + lambda*(1 - x*x)*y;  

end VanDerPol;

Differential equations

Variable

declarations

Visual Acausal

Hierarchical 

Component 

Modeling
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What is Special about Modelica?

Hybrid

Modeling

Visual Acausal

Component

Modeling

Multi-Domain

Modeling

Typed

Declarative

Equation-based 

Textual Language

time

Continuous-time

Discrete-time

Hybrid modeling =  

continuous-time + discrete-time modeling

Clocked discrete-time
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Block Diagram (e.g. Simulink, ...) or 

Proprietary Code (e.g. Ada, Fortran, C,...)

vs Modelica

Proprietary 

Code

Block Diagram

Modelica

Systems 

Definition

System 

Decomposition

Modeling of

Subsystems

Causality

Derivation

(manual derivation of

input/output relations) Implementation Simulation

Modelica – Faster Development, Lower Maintenance

than with Traditional Tools
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Modelica vs Simulink Block Oriented Modeling

Simple Electrical Model
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Graphical Modeling - Using Drag and Drop Composition
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• A DC motor can be thought of as an electrical circuit which 

also contains an electromechanical component

model DCMotor

Resistor R(R=100);

Inductor L(L=100);

VsourceDC DC(f=10);

Ground G;

ElectroMechanicalElement EM(k=10,J=10, b=2);

Inertia load;

equation

connect(DC.p,R.n);

connect(R.p,L.n);

connect(L.p, EM.n);

connect(EM.p, DC.n);

connect(DC.n,G.p);

connect(EM.flange,load.flange);

end DCMotor 

 

load 

EM 

DC 

G 

R L 

Multi-Domain (Electro-Mechanical) Modelica Model
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Automatic transformation to ODE or DAE for simulation:

(load component not included)

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:
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Model Translation Process to Hybrid DAE to Code

Modelica Model

Flat model Hybrid DAE

Sorted equations

C Code

Executable

Optimized sorted

equations

Modelica 

Model

Modelica 

Graphical Editor
Modelica

Source code

Translator

Analyzer

Optimizer

Code generator

C Compiler

Simulation

Modelica 

Textual Editor

Frontend

Backend

"Middle-end"

Modeling

Environment
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Brief Modelica History

• First Modelica design group meeting in fall 1996
• International group of people with expert knowledge in both language 

design and physical modeling

• Industry and academia

• Modelica Versions
• 1.0 released September 1997

• 2.0 released March 2002

• 2.2 released March 2005

• 3.0 released September 2007

• 3.1 released May 2009

• 3.2 released March 2010

• 3.3 released May 2012

• 3.2 rev 2 released November 2013

• 3.3 rev 1 released July 2014

• Modelica Association established 2000 in Linköping
• Open, non-profit organization
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Modelica in Power Generation

GTX Gas Turbine Power Cutoff Mechanism

 

Hello 

Courtesy of Siemens Industrial Turbomachinery AB

Developed 

by MathCore 

for Siemens
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Modelica in Automotive Industry
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Modelica in Avionics
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Application of Modelica in Robotics Models

Real-time Training Simulator for Flight, Driving

Courtesy of  Tobias Bellmann, DLR, 

Oberphaffenhofen, Germany

• Using Modelica models 

generating real-time 

code

• Different simulation 

environments (e.g. 

Flight, Car Driving, 

Helicopter)

• Developed at DLR 

Munich, Germany

• Dymola Modelica tool
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• GT unit, ST unit, Drum 
boilers unit and HRSG units, 
connected by thermo-fluid 
ports and by signal buses

• Low-temperature parts 

(condenser, feedwater 

system, LP circuits) are 

represented by trivial 
boundary conditions.

• GT model: simple law 

relating the electrical load 
request with the exhaust gas 

temperature and flow rate.

Combined-Cycle Power Plant
Plant model – system level

Courtesy Francesco Casella, Politecnico di Milano – Italy

and Francesco Pretolani, CESI SpA - Italy
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Attitude control for satellites 

using magnetic coils as actuators

Torque generation mechanism: 

interaction between coils and 

geomagnetic field

Formation flying on elliptical orbits 

Control the relative motion of two or more 

spacecraft

Modelica Spacecraft Dynamics Library

Courtesy of Francesco Casella, Politecnico di Milano, Italy
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System Dynamics – World Society Simulation
Limits to Material Growth; Population, Energy and Material flows 

• System Dynamics Modelica library by Francois Cellier (ETH), et al in OM distribution.

• Warming converts many agriculture areas to deserts (USA, Europe, India, Amazonas)

• Ecological breakdown around 2080-2100, drastic reduction of world population

• To avoid this: Need for massive investments in sustainable technology and renewable 

energy sources

CO2 Emissions per 

person:

• USA 17 ton/yr

• Sweden 7 ton/yr

• India 1.4 ton/yr

• Bangladesh 0.3 ton/yr

Left. World3 simulation 

with OpenModelica

• 2 collapse scenarios 

(close to current 

developments)

• 1 sustainable scenario 

(green).
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World3 Simulations with Different Start Years

for Sustainable Policies – Collapse if starting too late
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What Can You Do?
Need Global Sustainability Mass Movement

• Develop smart Cyber-Physical systems for reduced energy and material footprint

• Model-based circular economy for re-use of products and materials

• Promote sustainable lifestyle and technology

• Install electric solar PV panels

• Buy shares in cooperative wind power

20 sqm solar panels on garage roof, Nov 2012

Generated 2700 W at noon March 10, 2013

Expanded to 93 sqm, 12 kW, March 2013

House produced 11600 kwh, used 9500 kwh

Avoids 10 ton CO2 emission per year
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Example Electric Cars
Can be charged by electricity from own solar panels

Renault ZOE; 5 seat; Range:

• EU-drive cycle 210 km

• Realistic Swedish drive cycle:

• Summer:  165 km

• Winter:      100 – 110 km

Cheap fast supercharger

Tesla model S

range 480 km

DLR ROboMObil

• experimental electric car

• Modelica models



38

What Can You Do?
More Train Travel – Less Air Travel

• Air travel by Swedish 

Citizens – about the 

same emissions as all 

personal car traffic in 

Sweden!

• By train from Linköping 

to Munich and back –

saves almost 1 ton of 

CO2e emissions 

compared to flight

• Leave Linköping 07.00

in Munich 23.14



39

Small rectangles – surface needed 

for 100% solar energy for humanity
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Sustainable Society Necessary for Human Survival

Almost Sustainable

• India, 1.4 ton C02/person/year

• Healthy vegetarian food

• Small-scale agriculture

• Small-scale shops

• Simpler life-style (Mahatma Gandhi)

Non-sustainable

• USA 17 ton CO2, Sweden 7 ton CO2/yr

• High meat consumption (1 kg beef uses ca 

4000 L water for production)

• Hamburgers, unhealthy , includes beef

• Energy-consuming mechanized agriculture

• Transport dependent shopping centres

• Stressful materialistic lifestyle

Gandhi – role model for

future less materialistic

life style
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Part II

Introduction to the OpenModelica Environment
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OpenModelica – Free Open Source Tool
developed by the Open Source Modelica Consortium (OSMC)

• Graphical editor

• Model compiler

and simulator

• Debugger

• Performance 
analyzer

• Dynamic optimizer

• Symbolic modeling

• Parallelization

• Electronic 
Notebook

for teaching

42

EngineV6 11116

equation model
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• Advanced Interactive Modelica compiler (OMC)
• Supports most of the Modelica Language

• Modelica and Python scripting

• Basic environment for creating models
• OMShell – an interactive command handler   

• OMNotebook – a literate programming notebook 

• MDT – an advanced textual environment in Eclipse

43

• OMEdit graphic Editor

• OMDebugger for equations

• OMOptim optimization tool

• OM Dynamic optimizercollocation

• ModelicaML UML Profile

• MetaModelicaextension

• ParModelica extension

The OpenModelica Open Source Environment   
www.openmodelica.org

http://www.ida.liu.se/~adrpo/mdt/mdt-0.6.8.1/MDT-0.6.8.1-ClassElementsCompletion.JPG
http://www.ida.liu.se/~adrpo/mdt/mdt-0.6.8.1/MDT-0.6.8.1-ClassElementsCompletion.JPG
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Industrial members
• ABB AB, Sweden

• Bosch Rexroth AG, Germany  
• Siemens Turbo, Sweden 

• CDAC Centre, Kerala, India 

• Creative Connections, Prague
• DHI, Aarhus, Denmark

• Dynamica s.r.l., Cremona, Italy
• EDF, Paris, France

• Equa Simulation AB, Sweden

• Fraunhofer IWES, Bremerhaven
• IFPEN, Paris, France

Open-source community services

• Website and Support Forum

• Version-controlled source base

• Bug database

• Development courses

• www.openmodelica.org

Code Statistics

• Austrian Inst. of Tech, Austria

• TU Berlin, Inst. UEBB, Germany
• FH Bielefeld, Bielefeld, Germany

• TU Braunschweig, Germany  

• University of Calabria, Italy
• Univ California, Berkeley, USA  

• Chalmers Univ Techn, Sweden
• TU Dortmund, Germany

• TU Dresden, Germany

• Université Laval, Canada 
• Ghent University, Belgium

• Halmstad University, Sweden

University members

OSMC – International Consortium for Open Source 

Model-based Development Tools, 48 members Jan 2016

Founded Dec 4, 2007
• ISID Dentsu, Tokyo, Japan 

• Maplesoft, Canada  
• Ricardo Inc., USA

• RTE France, Paris, France

• Saab AB, Linköping, Sweden
• Scilab Enterprises, France

• SKF, Göteborg, Sweden
• TLK Thermo, Germany 

• Sozhou Tongyuan, China

• VTI, Linköping, Sweden
• VTT, Finland  

• Wolfram MathCore, Sweden 

• Heidelberg University, Germany 

• Linköping University, Sweden
• TU Hamburg/Harburg Germany

• IIT Bombay, Mumbai, India

• KTH, Stockholm, Sweden 
• Univ of Maryland, Syst Eng USA                                                                                                                          

• Univ of Maryland, CEEE, USA                                                                                                       
• Politecnico di Milano, Italy 

• Ecoles des Mines, CEP, France

• Mälardalen University, Sweden 
• Univ Pisa, Italy

• StellenBosch Univ, South Africa
• Telemark Univ College, Norway
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OpenModelica MDT – Eclipse Plugin

• Browsing of packages, classes, functions

• Automatic building of executables; 

separate compilation

• Syntax highlighting

• Code completion, 

Code query support for developers

• Automatic Indentation

• Debugger 
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OpenModelica Eclipse MDT: Code Outline and Hovering Info

Code Outline for
easy navigation within 

Modelica files

Identifier Info on 

Hovering
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Model-based Failure Mode and Effects Analysis

(Marc Bouissou and Lena Buffoni)

• Modelica models augmented with reliability properties can be used to generate 

reliability models in Figaro, which in turn can be used for static reliability analysis

• Prototype in OpenModelica integrated with Figaro tool (which is becoming open-
source) 

Modelica Library

Application 

Modelica model

Simulation

Figaro Reliability 

Library
Reliability model 

in Figaro
FT generation FT processing

Automated 

generation
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General Tool Interoperability & Model Exchange 

Functional Mock-up Interface (FMI)

• FMI development was started by ITEA2 MODELISAR project. FMI is a 

Modelica Association Project now

• Version 1.0

• FMI for Model Exchange (released Jan 26,2010)

• FMI for Co-Simulation (released Oct 12,2010)

• Version 2.0

• FMI for Model Exchange and Co-Simulation (released July 25,2014)

• > 60 tools supporting it (https://www.fmi-standard.org/tools)

Engine
with ECU

Gearbox
with ECU

Thermal
systems

Automated
cargo door

Chassis components,
roadway, ECU (e.g. ESP)

etc.

functional mockup interface for model exchange and tool coupling
courtesy Daimler
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FMI in OpenModelica

• FMI Model Exchange implemented (FMI 1.0 and FMI 2.0)

• A prototype of FMI 2.0 co-simulation is available

• Ongoing work to support full FMI 2.0 co-simulation

• The FMI interface is accessible via the OpenModelica scripting 

environment and the OpenModelica connection editor
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OpenModelica Simulation in Web Browser Client

OpenModelica compiles

to efficient

Java Script code which is

executed in web browser

MultiBody  RobotR3.FullRobot
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Modelica3D Library with OpenModelica

• Modelica 3D 

Graphics Library 

by Fraunhofer 

FIRST, Berlin

• Part of 

OpenModelica 

distribution

• Can be used for 

3D graphics in 

OpenModelica
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Problems

Solved problems Result plot Export result data .csv

OMOptim – Parameter Sweep Design Optimization

Here

Pareto

front

optimiza-

tion
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Optimization of Dynamic Trajectories Using 

Multiple-Shooting and Collocation 

• Minimize a goal function subject to model 

equation constraints, useful e.g. for NMPC

• Multiple Shooting/Collocation

• Solve sub-problem in each sub-interval

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

1 2 4 8 16

MULTIPLE_COLLOCATION

ipopt [scaled] jac_g [scaled]

Example speedup, 16 cores: 

In OpenModelica 1.9.1

beta release Jan 2014.
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OMnotebook Interactive Electronic Notebook 

Here Used for Teaching Control Theory
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MetaModelica Language Extension for

Model Transformations and Advanced Applications

• Large-scale existing application – OpenModelica compiler 

written in MetaModelica, compiling itself

• MetaModelica language extension

• single assignment equations (with opt. patterns)

• tree data structures, garbage collection

• pattern equations

• matching, backtracking

• Very efficient portable implementation (compiles to C)

• Now ongoing standardization in Modelica Association
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OpenModelica Model Parallelization

Faster Simulation on Multi-Core

Automated parallelization of models
Parallelizing numeric Jacobian 

computations in simulation

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1 2 3 4 6 8 10 12 14

Speedup ScalableTestSuite
N=39 nnz= 818

Sp…

number of 

threads
Speedup about 4

using 8 threads
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Faster Simulation – Compiling Modelica to Multi-Core
Speedup on NVIDIA, Modelica Model, Generated Code, n Problem Size
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Recent Large-scale  ABB OpenModelica Application
Generate code for controlling 7.5 to 10% of German Power Production

ABB OPTIMAX PowerFit

• Real-time optimizing control of large-
scale virtual power plant for system 
integration

• Software including OpenModelica now 
used in managing more than 2500 
renewable plants, total up to 1.5 GW

High scalability supporting growth

• 2012: initial delivery (for 50 plants)

• 2013: SW extension (500 plants)

• 2014: HW+SW extension (> 2000)

• 2015: HW+SW extension, 
incl. OpenModelica generating optimizing 
controller code in FMI 2.0 form

Manage 7.5% - 10% of German Power

• 2015, Aug: OpenModelica Exports FMUs 
for real-time optimizing control (seconds) 
of about 5.000 MW (7.5%) of power in 
Germany
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Industrial Product with OEM Usage of OpenModelica –
MIKE by DHI, WEST Water Quality 

• MIKE by DHI, www.mikebydhi.com, WEST Water Quality modeling and 

simulation environment

• Includes a large part of the OpenModelica compiler using the OEM license.

• Here a water treatment effluent and sludge simulation.
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Part III

Dynamic Verification/Testing of 

Requirements vs Usage Scenario Models

Wladimir Schamai, Lena Buffoni, Peter Fritzson

and contributions from MODRIO partners
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OpenModelica and Papyrus Based Model-Based 

Development  Environment to Cover Product-Design V

Product 

models

Requirements

models

Unified Modeling:   Meta-modeling& Modelica& UML & OWL

Business

Process

Control

Requirements

Capture

Model-Driven 

Design

(PIM)

Compilation 

& Code Gen

(PSM)

System

Simulation

Software &

Syst Product

Feedback

Platform

models

Process

models

Product 

models

Requirements

models

Unified Modeling:   Meta-modeling& Modelica& UML 

Business

Process

Control

Requirements

Capture
Model

-
Driven 

Design

Compilation

& Code Gen

System

Simulation

Software &

System Product
Platform

models
Process

models

Specification

Design

Design
Refinement

Component  verification

Subsystem level integration and

verification 

Subsystem level integration test

calibration and  verification 

Product verification and

deployment 

Maintenance

Realization

Detailed feature design and

implementation 

Architectural  design and 

system functional design

Preliminary feature design

System

requirements 

Level of Abstraction

Documentation, Version and Configuration Management 

Verification

Integration

Calibration

Experience Feedback
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Business Process Control and Modeling

Product 

models

Requirements

models

Unified Modeling:   Meta-modeling & Modelica & UML & OWL

Business

Process

Control

Requirements

Capture

Model-Driven 

Design

(PIM)

Compilation 

& Code Gen

(PSM)

System

Simulation

Software &

Syst Product

Feedback

Platform

models

Process

models

Product 

models

Requirements

models

Unified Modeling:   Meta-modeling & Modelica & UML 

Business

Process

Control

Requirements

Capture
Model

-
Driven 

Design

Compilation

& Code Gen

System

Simulation

Software &

System Product
Platform

models
Process

models

Metso Business model & simulation

VTT Simantics Graphic Modeling Tool

OpenModelica based simulation

Simulation of 3 strategies with 

outcomes

VTT Simantics

Business process modeler

OpenModelica

compiler & simulator
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Requirement Capture

Product 

models

Requirements

models

Unified Modeling:   Meta-modeling & Modelica & UML & OWL

Business

Process

Control

Requirements

Capture

Model-Driven 

Design

(PIM)

Compilation 

& Code Gen

(PSM)

System

Simulation

Software &

Syst Product

Feedback

Platform

models

Process

models

Product 

models

Requirements

models

Unified Modeling:   Meta-modeling & Modelica & UML 

Business

Process

Control

Requirements

Capture
Model

-
Driven 

Design

Compilation

& Code Gen

System

Simulation

Software &

System Product
Platform

models
Process

models

OpenModelica based simulation

vVDR (virtual Verification of 

Designs against Requirements)

in ModelicaML UML/Modelica 

Profile, part of OpenModelica

Design Model

Scenario Model

Requirement 

Models

Verification Model

Binding

Provider from 

design model

Client from requirement model 
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OpenModelica – ModelicaML UML Profile
Based on Open-Source Papyrus UML and OpenModelica

• ModelicaML is a UML Profile for SW/HW modeling
• Applicable to “pure” UML or to other UML profiles, e.g. SysML

• Standardized Mapping UML/SysML to Modelica
• Defines transformation/mapping for executable models

• Being standardized by OMG

• ModelicaML
• Defines graphical concrete syntax (graphical notation for diagram)  for 

representing Modelica constructs integrated with UML

• Includes graphical formalisms (e.g. State Machines, Activities, 
Requirements) 

• Which do not yet exist in Modelica language (extension work ongoing) 

• Which are translated into executable Modelica code

• Is defined towards generation of executable Modelica code

• Current implementation based on the Papyrus UML tool + OpenModelica



65

Example: Simulation and Requirements Evaluation

Req. 001 is instantiated 2 times 

(there are 2 tanks in the system)

tank-height is 0.6m

Req. 001 for the tank2  is 

violated

Req. 001 for the tank1  is 

not violated
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ModelicaML: Graphical Notation

a

Structure

Behavior

Requirements
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Example: Representation of System Structure

Interconnections

Inheritance

Components
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Example: Representation of System Behavior

State 

Machine of 

the Tank

State Machine 

of the Controller

Conditional 

Algorithm (Activity 

Diagram)
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Example: Representation of System Requirements

Textual Requirement Formalized Requirement
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vVDR Method –

virtual Verification of Designs vs Requirements

Formalize 
Requirements 

Formalize Designs

Formalize 
Scenarios

Create Verification 
Models

Execute and 
Create Report

Analyze Results

RMM
Requirement 

Monitor Models

Scenario 

Models
SM

Designs 

Alternative 

Models

DAM

VM Verification Models

AUTOMATED

Task Created Artifact

Goal: Enable on-demand 

verification of designs 

against requirements 

using automated model 

composition at any time 

during development.

AUTOMATED

Actor

Reports

*
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Challenge

We want to verify different design alternatives against sets of requirements

using different scenarios. Questions: 

1) How to find valid combinations of design alternatives, scenarios and requirements in

order to enable an automated composition of verification models?

2) Having found a valid combination: How to bind all components correctly? 

…

Create Verification 
Models

… RMM

1. Verification 

Model
VM DAM SM

2. Verification 

Model
VM …

…

Requirement 

Models

Scenario 

Models

Designs Alternative 

Models
DAM

SM
DAM

DAM
SM

SM

SM
SM

SM
RMM 1

RMM

RMM

RMM

RMM
SM

RMM

RMM

RMM

RMM

… …

n. Verification 

Model

*
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Composing Verification Models
main idea

• Collect all scenarios, requirements, import mediators

• Generate/compose verification models automatically:
• Select the system model to be verified

• Find all scenarios that can stimulate the selected system model (i.e., for 

each mandatory client check whether the binding expression can be inferred)

• Find requirements that are implemented in the selected system model (i.e., 

check whether for each requirement for all mandatory clients binding 

expressions can be inferred)

• Present the list of scenarios and requirements to the user
• The user can select only a subset or scenarios or requirements he/she 

wishes to consider
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Generating/Composing Verification Models
algorithm



74

Simulation and Report Generation in ModelicaML

Verification models are 

simulated. 

The generated Verification 

Report is a prepared summary of:

• Configuration, bindings

• Violations of requirements 

• etc.
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Continuous and Discrete Time Locators for 

Time-related Requirements

• A Continuous Time Locator(CTL) specifies one or more time 

intervals

• Time intervals have a duration

• They usually have a position in time, 

but a sliding time window defines any

time period of a given duration

• A Discrete Time Locator (DTL) defines one or more positions in time 

and has no duration

• An event is associated with a DTL 

that specifies when the event occurred

• The difference between events and 

DTLs is that a DTL is not an object

• That position may be relative to the initialisation of the system or 

to another DTL

time

time

duration

time
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Time Locators Expressed in Modelica

Special FORML-L syntax Standard Modelica syntax

duringAny duration duringAny(duration)

after event after(event)

after event1 untilNext event2 afterUntil(event1, event2)

after event for duration afterFor(event, duration)

after event within duration afterWithin(event, duration)

until event until(event)

every duration1 for duration2 everyFor(duration1, duration2)

when condition changes Maps to Modelica if
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From Text to Simulated Requirement

– Modelica Extended with new Operators

model P2a   extends Condition;

input ConditionStatus bPSNeeded, sARequired, set1Powered;

equation

status = if afterWithin (bPSNeeded == notViolated and

sARequired == notViolated, 20) then

if set1Powered == notViolated then

notViolated else violated else undefined;

end P2a;
BPS.Needed and SA.Required

s20 s20

t = 0 time

BPS.Needed and SA.Required

Set1.Powered must becometrue within the 

timeframe s20 and remain true afterwards

From a text requirement expressing a condition:

A - In the absence of any Backup Power Supply (BPS) component failure or in the presence of 
a single sensor failure, when the BPS is not under maintenance, in case of loss of MPS, and if 
safety injection is required, Set1 must be powered within 20 s 
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From Text to Simulated Requirement –

Requirement not Violated – OpenModelica Simulation

Within 20s

BPS Powered

Requirement 

undefined 

outside the 

specified time 

window

Requirement 

validated

BPS.Needed and SA.Required

s20

t = 0 time
t = 10 t = 25

Set1.Powered

3-valued logic

prototype:

1 – true

0 – false

-1 – undefined 



Linköping university

Industrial Use Case for Requirements 

Verification and Model Composition in ModelicaML

OPENPROD-Project Case Study

•Wladimir SCHAMAI (EADS Innovation Works, Germany)

•Peter Fritzson (Linköping University)

•Audrey JARDIN (EDF - R&D, France)

•Daniel BOUSKELA (EDF - R&D, France)
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EDF Use Case – System Description of SRI system
(Intermediate Cooling System) in turbine hall of a nuclear power plant

 

Heat exchanger 1 

Heat exchanger 2 

Pump 1 

Pump 2 

Pump 3 

Source of heat 

LC 2 LC 1 

LC 3 

LC 5 

LC 6 

LC 4 

Sensor of 
temperature 

Regulating valve 1 

Regulating valve 2 

Bypass valve 

Leak 

Users valve 

Feeding tank Feeding on-off valve 
TOR alimentation 

Tube T2 Tube T1 
Tube 
T5 

Tube 
T6 

Tube T4 

Tube 
T8 

 Cooling system 
 

Water 
feeding 

Water 

circulation 

Auxiliary 
equipment 

LC : Limit condition 
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System Requirements

- #002: The set point of the SRI water temperature must be held at a 

minimum value of 17°C.

- #003: In a normal operating mode, the water temperature of the SRI 

circuit should be between Ts - e and Ts + e (Ts : set point temperature). 

- #0083: A pump must not start more than 3 times per hour.

- #013: In a normal operating mode, there must not be less than 2 

operating pumps during more than 2s.

- #007: The water temperature must not vary more than 10°C/hour.
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SRI Case Study Conclusion and Lessons Learnt 

• Showed applicability of vVDR method to realistic industrial

applications

• ModelicaML is a promising prototype implementation of the vVDR

method, needs improved usability and stability

• Lessons learnt:

• Formalized requirements should be tested separately in order to 

ensure correctness

• Model validity asserts must be included

• Parameterized requirement monitors can be re-used as library

components (later realized in MODRIO project)

• Later work, now ongoing

• Stochastic aspects (model uncertainties, tolerances in 

requirements, ...) should be taken into account
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Part IV

Equation-Based Model Dynamic Debugging
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Need for Debugging Tools

Map Low vs High Abstraction Level

• A major part of the total cost of software projects 

is due to testing and debugging

• US-Study 2002:  

Software errors cost the US economy annually~ 60 Billion $

• Problem:  Large Gap in Abstraction Level

from Equations to Executable Code

• Example error message (hard to understand)

Error solving nonlinear system 132

time = 0.002

residual[0] = 0.288956

x[0] = 1.105149

residual[1] = 17.000400

x[1] = 1.248448

...
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Example Symbolic Transformations

with Compiler Debug Trace

(1) substitution:

y + der(x * (time * z))

=>

y + der(x * (time * 1.0))

(2) simplify:

y + der(x * (time * 1.0))

=>

y + der(x * time)

(3) expand derivative 

(symbolic diff):

y + der(x * time)

=>

y + (x + der(x) * time)

(4) solve:

0.0 = y + (x + der(x) * time)

=>

der(x) = ((-y) - x) / time

Example:  0 = y + der(x * time * z);      z = 1.0;

• Complicated to understand source of some errors

• Efficient trace  of transformations < 1 %  overhead
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Mapping dynamic run-time error to source model position

Integrated Static-Dynamic

OpenModelica Equation Model Debugger

Showing 

equation 

transfor

mations 

of a 

model:

Efficient

handling

of

Large

Equation

Systems
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Example – Detecting Source of Chattering 

(excessive event switching) causing bad performance

• Lkjlkjlj

• Lkjlkj

• lkjklj

equation

z = if x > 0 then -1 else 1;

y = 2 * z;

…
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Error Indication – Simulation Slows Down
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Transformations Browser – EngineV6 Overview

(11 116 equations in model)
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Performance Profiling
(Here: Profiling all equations in MSL 3.2.1 DoublePendulum)
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• ABB OPTIMAX® provides advanced model based 

control products for power generation and water utilities. 

• ABB: “OpenModelica provides outstanding debugging 

features that help to save a lot of time during model 

development.”

ABB Commercial Application Use of Debugger
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Equation Model Debugging on Siemens Model
(used on Siemens Evaporator test model, 1100 equations)

92
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Equation Model Debugger on Siemens Model
(Siemens Evaporator test model, 1100 equations)

Pointing out the buggy equation

y = u1/u2;

that gives division by zero
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Performance Profiling for faster Simulation
(Here: Profiling equations of Siemens Drum boiler model with evaporator

• Measuring performance of equation blocks to find bottlenecks

• Useful as input before model simplification for real-time applications

• Integrated with the debugger to point out the slow equations

• Suitable for real-time profiling (collect less information), or a complete 

view of all equation blocks and function calls

Conclusion from the evaluation:

“…the profiler makes the process

of performance optimization 

radically shorter.”
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Part V

New Project OPENCPS

Open Cyber-Physical Development

Integrating

OpenModelica (Modelica) – Papyrus (UML)



New ITEA3 Project:   OPENCPS
Open Cyber-Physical System Model-Driven Certified Development

2016-2018

Industrial Coordinator

Saab AeroSpace, Magnus Eek

Research Coordinator

Linköping Univ, Peter Fritzson
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OPENCPS – Integrating OpenModelica and Papyrus

for Cyber-Physical System Development

Great industrial 

interest in open 
source tools:
• Control of features

• Industry collaboration

Development tools 

are complex and 
critical for industry:
• Interoperability

• Tool vendor lock-ins

• Life cycle support

Challenges in cyber-

physical system 
development:
• Complexity

• High demands

• Cost efficiency

Development Tools
critical for industry

Challenges in CPS

Open Source

The two leading open source tools OpenModelica and Papyrus will be

significantly developed and integrated for cyber-physical development
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OPENCPS WP3: Translation and Validation of Code

for Real-Time Embedded Applications

Goal: OpenModelica production code generation for advanced control 

applications supporting the translation validation of discrete and 

continuous-time models based on (acausal) equations.
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Summary and Questions

Hybrid

Modeling

Visual Acausal

Component

Modeling

Multi-Domain

Modeling

Typed

Declarative 

Textual Language Thanks for listening!

www.modelica.org – Language, Standard Library

www.openmodelica.org – Open Source Tool

Modelica® is a registered trademark of the Modelica Association

http://www.modelica.org/
http://www.openmodelica.org/

