
Keynote

MESCONF 2016, Munich

October 6, 2016

Peter Fritzson
peter.fritzson@liu.se

Director of Open Source ModelicaConsortium
Vice Chairman of ModelicaAssociation

Professor at Linköping University

Modeling and Simulation of Cyber-physical Systems

including Requirement Formalization using the

OpenModelica MBSE Toolkit based on

Modelica and partly on UML

mailto:peter.fritzson@liu.se

2

Industrial Challenges for Complex Cyber-Physical

System Products of both Software and Hardware

• Increased Software Fraction

• Shorter Time-to-Market

• Higher demands on effective

strategic decision making

• Cyber-Physical (CPS) – Cyber (software)

Physical (hardware) products

3

Open Source Model-Based Development Environment

Covers Product-Design V – (OPENPROD ITEA2 Project)

Product

models

Requirements

models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business

Process

Control

Requirements

Capture

Model-Driven

Design

(PIM)

Compilation

& Code Gen

(PSM)

System

Simulation

Software &

Syst Product

Feedback

Platform

models

Process

models

Product

models

Requirements

models

Unified Modeling: Meta-modeling& Modelica& UML

Business

Process

Control

Requirements

Capture
Model

-
Driven

Design

Compilation

& Code Gen

System

Simulation

Software &

System Product
Platform

models
Process

models

Specification

Design

Design
Refinement

Component verification

Subsystem level integration and

verification

Subsystem level integration test

calibration and verification

Product verification and

deployment

Maintenance

Realization

Detailed feature design and

implementation

Architectural design and

system functional design

Preliminary feature design

System

requirements

Level of Abstraction

Documentation, Version and Configuration Management

Verification

Integration

Calibration

Experience Feedback

4

Recent Big Modelica Book, 2014 (Warning! Commercial)

Peter Fritzson
Principles of Object Oriented

Modeling and Simulation with

Modelica 3.3:

A Cyber-Physical Approach

Can be ordered from Wiley or Amazon

Wiley-IEEE Press, 2014, 1250 pages

• OpenModelica
• www.openmodelica.org

• Modelica Association
• www.modelica.org

http://www.openmodelica.org/
http://www.modelica.org/

5

Overview of this Talk

• Part I – Introduction to Modelica

• Part II – Introduction to the OpenModelica Open

Source MBSE Environment

• Part III – Dynamic verification/testing of formalized

requirements vs Models in MBSE

• Part IV – Dynamic debugging of equation-based

models

• Part V– New Project OPENCPS

6

Part I

Introduction to Modelica

7

Modelica Background: Stored Knowledge

Model knowledge is stored in books and human

minds which computers cannot access

“The change of motion is proportional

to the motive force impressed “
– Newton

8

Modelica Background: The Form – Equations

• Equations were used in the third millennium B.C.

• Equality sign was introduced by Robert Recorde in 1557

Newton still wrote text (Principia, vol. 1, 1686)

“The change of motion is proportional to the motive force

impressed ”
CSSL (1967) introduced a special form of “equation”:

variable = expression

v = INTEG(F)/m

Programming languages usually do not allow equations!

9

What is Modelica?

• Robotics

• Automotive

• Aircrafts

• Satellites

• Power plants

• Systems biology

A language for modeling of complex cyber-physical systems

10

What is Modelica?

A language for modeling of complex cyber-physical systems

Primary designed for simulation, but there are also other

usages of models, e.g. optimization.

11

What is Modelica?

A language for modeling of complex cyber-physical systems

i.e., Modelica is not a tool

Free, open language

specification:
There exist several free and commercial

tools, for example:

• OpenModelica from OSMC

• Dymola from Dassault systems

• Wolfram System Modeler fr Wolfram MathCore

• SimulationX from ITI

• MapleSim from MapleSoft

• AMESIM from LMS

• JModelica.org from Modelon

• MWORKS from Tongyang Sw & Control

• IDA Simulation Env, from Equa

• ESI Group Modeling tool, ESI Group

Available at: www.modelica.org

Developed and standardized

by Modelica Association

12

Declarative language
Equations and mathematical functions allow acausal modeling,

high level specification, increased correctness

Multi-domain modeling
Combine electrical, mechanical, thermodynamic, hydraulic,

biological, control, event, real-time, etc...

Everything is a class
Strongly typed object-oriented language with a general class

concept, Java & MATLAB-like syntax

Visual component programming
Hierarchical system architecture capabilities

Efficient, non-proprietary
Efficiency comparable to C; advanced equation compilation,

e.g. 300 000 equations, ~150 000 lines on standard PC

Modelica – The Next Generation Modeling Language

13

What is acausal modeling/design?

Why does it increase reuse?

The acausality makes Modelica library classes more

reusable than traditional classes containing assignment

statements where the input-output causality is fixed.

Example: a resistor equation:

R*i = v;

can be used in three ways:

i := v/R;

v := R*i;

R := v/i;

Modelica Acausal Modeling

14

What is Special about Modelica?

• Multi-Domain Modeling

• Visual acausal hierarchical component modeling

• Typed declarative equation-based textual language

• Hybrid modeling and simulation

15

What is Special about Modelica?

Multi-Domain

Modeling

Cyber-Physical Modeling

Physical

Cyber

3 domains

- electric

- mechanics

- control

16

What is Special about Modelica?

Multi-Domain

Modeling

Acausal model

(Modelica)

Causal

block-based

model

(Simulink)

Keeps the physical

structure

Visual Acausal

Hierarchical

Component

Modeling

17

inertial

x
y

axis1

axis2

axis3

axis4

axis5

axis6

r3Drive1

1

r3Motor
r3ControlqdRef

1

S

qRef

1

S

k2

i

k1

i

qddRef cut joint

q: angle

qd: angular velocity
qdd: angular acceleration

qd

tn

Jmotor=J

gear=i

spring=c

fr
ic

=
R

v
0

S

rel

joint=0

S

V
s

-

+

diff

-

+

pow er

emf

L
a
=
(2

5
0
/(2

*D
*w

m
))

R
a
=
2
5
0

Rd2=100

C=0.004*D/w m

-

+
OpI

Rd1=100

Ri=10

Rp1=200

R
p
2
=
5
0

Rd4=100

h
a
ll2

R
d
3
=
1
0
0

g1

g2

g3

hall1

g4

g5

rw

cut in

iRef

qd q

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

w Sum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q
qd

iRefqRef

qdRef

What is Special about Modelica?

Visual Acausal

Hierarchical

Component

Modeling

Multi-Domain

Modeling

Hierarchical system

modeling

Courtesy of Martin Otter

Srel = n*transpose(n)+(identity(3)- n*transpose(n))*cos(q)-

skew(n)*sin(q);

wrela = n*qd;

zrela = n*qdd;

Sb = Sa*transpose(Srel);

r0b = r0a;

vb = Srel*va;

wb = Srel*(wa + wrela);

ab = Srel*aa;

zb = Srel*(za + zrela + cross(wa, wrela));

18

What is Special about Modelica?

Multi-Domain

Modeling

Typed

Declarative

Equation-based

Textual Language

A textual class-based language

OO primary used for as a structuring concept

Behaviour described declaratively using

• Differential algebraic equations (DAE) (continuous-time)

• Event triggers (discrete-time)

class VanDerPol "Van der Pol oscillator model"

Real x(start = 1) "Descriptive string for x”;

Real y(start = 1) "y coordinate”;

parameter Real lambda = 0.3;

equation

der(x) = y;

der(y) = -x + lambda*(1 - x*x)*y;

end VanDerPol;

Differential equations

Variable

declarations

Visual Acausal

Hierarchical

Component

Modeling

19

What is Special about Modelica?

Hybrid

Modeling

Visual Acausal

Component

Modeling

Multi-Domain

Modeling

Typed

Declarative

Equation-based

Textual Language

time

Continuous-time

Discrete-time

Hybrid modeling =

continuous-time + discrete-time modeling

Clocked discrete-time

20

Block Diagram (e.g. Simulink, ...) or

Proprietary Code (e.g. Ada, Fortran, C,...)

vs Modelica

Proprietary

Code

Block Diagram

Modelica

Systems

Definition

System

Decomposition

Modeling of

Subsystems

Causality

Derivation

(manual derivation of

input/output relations) Implementation Simulation

Modelica – Faster Development, Lower Maintenance

than with Traditional Tools

21

Modelica vs Simulink Block Oriented Modeling

Simple Electrical Model

R1=10

C=0.01 L=0.1

R2=100

G

AC=220

p
n

p

p p

p

p

n

n

n n

-1

 1

sum3

+1

 -1

sum1

+1

+1

sum2

1

s

l2

1

s

l1sinln

1/R1

Res1

1/C

Cap

1/L

Ind

R2

Res2

Modelica:

Physical model –

easy to understand

Simulink:

Signal-flow model – hard to

understand

Keeps the

physical

structure

22

Graphical Modeling - Using Drag and Drop Composition

23

• A DC motor can be thought of as an electrical circuit which

also contains an electromechanical component

model DCMotor

Resistor R(R=100);

Inductor L(L=100);

VsourceDC DC(f=10);

Ground G;

ElectroMechanicalElement EM(k=10,J=10, b=2);

Inertia load;

equation

connect(DC.p,R.n);

connect(R.p,L.n);

connect(L.p, EM.n);

connect(EM.p, DC.n);

connect(DC.n,G.p);

connect(EM.flange,load.flange);

end DCMotor

load

EM

DC

G

R L

Multi-Domain (Electro-Mechanical) Modelica Model

24

Automatic transformation to ODE or DAE for simulation:

(load component not included)

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:

25

Model Translation Process to Hybrid DAE to Code

Modelica Model

Flat model Hybrid DAE

Sorted equations

C Code

Executable

Optimized sorted

equations

Modelica

Model

Modelica

Graphical Editor
Modelica

Source code

Translator

Analyzer

Optimizer

Code generator

C Compiler

Simulation

Modelica

Textual Editor

Frontend

Backend

"Middle-end"

Modeling

Environment

26

Brief Modelica History

• First Modelica design group meeting in fall 1996
• International group of people with expert knowledge in both language

design and physical modeling

• Industry and academia

• Modelica Versions
• 1.0 released September 1997

• 2.0 released March 2002

• 2.2 released March 2005

• 3.0 released September 2007

• 3.1 released May 2009

• 3.2 released March 2010

• 3.3 released May 2012

• 3.2 rev 2 released November 2013

• 3.3 rev 1 released July 2014

• Modelica Association established 2000 in Linköping
• Open, non-profit organization

27

Modelica in Power Generation

GTX Gas Turbine Power Cutoff Mechanism

Hello

Courtesy of Siemens Industrial Turbomachinery AB

Developed

by MathCore

for Siemens

28

Modelica in Automotive Industry

29

Modelica in Avionics

30

Application of Modelica in Robotics Models

Real-time Training Simulator for Flight, Driving

Courtesy of Tobias Bellmann, DLR,

Oberphaffenhofen, Germany

• Using Modelica models

generating real-time

code

• Different simulation

environments (e.g.

Flight, Car Driving,

Helicopter)

• Developed at DLR

Munich, Germany

• Dymola Modelica tool

31

• GT unit, ST unit, Drum
boilers unit and HRSG units,
connected by thermo-fluid
ports and by signal buses

• Low-temperature parts

(condenser, feedwater

system, LP circuits) are

represented by trivial
boundary conditions.

• GT model: simple law

relating the electrical load
request with the exhaust gas

temperature and flow rate.

Combined-Cycle Power Plant
Plant model – system level

Courtesy Francesco Casella, Politecnico di Milano – Italy

and Francesco Pretolani, CESI SpA - Italy

32

Attitude control for satellites

using magnetic coils as actuators

Torque generation mechanism:

interaction between coils and

geomagnetic field

Formation flying on elliptical orbits

Control the relative motion of two or more

spacecraft

Modelica Spacecraft Dynamics Library

Courtesy of Francesco Casella, Politecnico di Milano, Italy

33

System Dynamics – World Society Simulation
Limits to Material Growth; Population, Energy and Material flows

• System Dynamics Modelica library by Francois Cellier (ETH), et al in OM distribution.

• Warming converts many agriculture areas to deserts (USA, Europe, India, Amazonas)

• Ecological breakdown around 2080-2100, drastic reduction of world population

• To avoid this: Need for massive investments in sustainable technology and renewable

energy sources

CO2 Emissions per

person:

• USA 17 ton/yr

• Sweden 7 ton/yr

• India 1.4 ton/yr

• Bangladesh 0.3 ton/yr

Left. World3 simulation

with OpenModelica

• 2 collapse scenarios

(close to current

developments)

• 1 sustainable scenario

(green).

34

World3 Simulations with Different Start Years

for Sustainable Policies – Collapse if starting too late

35

36

What Can You Do?
Need Global Sustainability Mass Movement

• Develop smart Cyber-Physical systems for reduced energy and material footprint

• Model-based circular economy for re-use of products and materials

• Promote sustainable lifestyle and technology

• Install electric solar PV panels

• Buy shares in cooperative wind power

20 sqm solar panels on garage roof, Nov 2012

Generated 2700 W at noon March 10, 2013

Expanded to 93 sqm, 12 kW, March 2013

House produced 11600 kwh, used 9500 kwh

Avoids 10 ton CO2 emission per year

37

Example Electric Cars
Can be charged by electricity from own solar panels

Renault ZOE; 5 seat; Range:

• EU-drive cycle 210 km

• Realistic Swedish drive cycle:

• Summer: 165 km

• Winter: 100 – 110 km

Cheap fast supercharger

Tesla model S

range 480 km

DLR ROboMObil

• experimental electric car

• Modelica models

38

What Can You Do?
More Train Travel – Less Air Travel

• Air travel by Swedish

Citizens – about the

same emissions as all

personal car traffic in

Sweden!

• By train from Linköping

to Munich and back –

saves almost 1 ton of

CO2e emissions

compared to flight

• Leave Linköping 07.00

in Munich 23.14

39

Small rectangles – surface needed

for 100% solar energy for humanity

40

Sustainable Society Necessary for Human Survival

Almost Sustainable

• India, 1.4 ton C02/person/year

• Healthy vegetarian food

• Small-scale agriculture

• Small-scale shops

• Simpler life-style (Mahatma Gandhi)

Non-sustainable

• USA 17 ton CO2, Sweden 7 ton CO2/yr

• High meat consumption (1 kg beef uses ca

4000 L water for production)

• Hamburgers, unhealthy , includes beef

• Energy-consuming mechanized agriculture

• Transport dependent shopping centres

• Stressful materialistic lifestyle

Gandhi – role model for

future less materialistic

life style

41

Part II

Introduction to the OpenModelica Environment

42

OpenModelica – Free Open Source Tool
developed by the Open Source Modelica Consortium (OSMC)

• Graphical editor

• Model compiler

and simulator

• Debugger

• Performance
analyzer

• Dynamic optimizer

• Symbolic modeling

• Parallelization

• Electronic
Notebook

for teaching

42

EngineV6 11116

equation model

43

• Advanced Interactive Modelica compiler (OMC)
• Supports most of the Modelica Language

• Modelica and Python scripting

• Basic environment for creating models
• OMShell – an interactive command handler

• OMNotebook – a literate programming notebook

• MDT – an advanced textual environment in Eclipse

43

• OMEdit graphic Editor

• OMDebugger for equations

• OMOptim optimization tool

• OM Dynamic optimizercollocation

• ModelicaML UML Profile

• MetaModelicaextension

• ParModelica extension

The OpenModelica Open Source Environment
www.openmodelica.org

http://www.ida.liu.se/~adrpo/mdt/mdt-0.6.8.1/MDT-0.6.8.1-ClassElementsCompletion.JPG
http://www.ida.liu.se/~adrpo/mdt/mdt-0.6.8.1/MDT-0.6.8.1-ClassElementsCompletion.JPG

44

Industrial members
• ABB AB, Sweden

• Bosch Rexroth AG, Germany
• Siemens Turbo, Sweden

• CDAC Centre, Kerala, India

• Creative Connections, Prague
• DHI, Aarhus, Denmark

• Dynamica s.r.l., Cremona, Italy
• EDF, Paris, France

• Equa Simulation AB, Sweden

• Fraunhofer IWES, Bremerhaven
• IFPEN, Paris, France

Open-source community services

• Website and Support Forum

• Version-controlled source base

• Bug database

• Development courses

• www.openmodelica.org

Code Statistics

• Austrian Inst. of Tech, Austria

• TU Berlin, Inst. UEBB, Germany
• FH Bielefeld, Bielefeld, Germany

• TU Braunschweig, Germany

• University of Calabria, Italy
• Univ California, Berkeley, USA

• Chalmers Univ Techn, Sweden
• TU Dortmund, Germany

• TU Dresden, Germany

• Université Laval, Canada
• Ghent University, Belgium

• Halmstad University, Sweden

University members

OSMC – International Consortium for Open Source

Model-based Development Tools, 48 members Jan 2016

Founded Dec 4, 2007
• ISID Dentsu, Tokyo, Japan

• Maplesoft, Canada
• Ricardo Inc., USA

• RTE France, Paris, France

• Saab AB, Linköping, Sweden
• Scilab Enterprises, France

• SKF, Göteborg, Sweden
• TLK Thermo, Germany

• Sozhou Tongyuan, China

• VTI, Linköping, Sweden
• VTT, Finland

• Wolfram MathCore, Sweden

• Heidelberg University, Germany

• Linköping University, Sweden
• TU Hamburg/Harburg Germany

• IIT Bombay, Mumbai, India

• KTH, Stockholm, Sweden
• Univ of Maryland, Syst Eng USA

• Univ of Maryland, CEEE, USA
• Politecnico di Milano, Italy

• Ecoles des Mines, CEP, France

• Mälardalen University, Sweden
• Univ Pisa, Italy

• StellenBosch Univ, South Africa
• Telemark Univ College, Norway

45

OpenModelica MDT – Eclipse Plugin

• Browsing of packages, classes, functions

• Automatic building of executables;

separate compilation

• Syntax highlighting

• Code completion,

Code query support for developers

• Automatic Indentation

• Debugger

46
46

OpenModelica Eclipse MDT: Code Outline and Hovering Info

Code Outline for
easy navigation within

Modelica files

Identifier Info on

Hovering

47

Model-based Failure Mode and Effects Analysis

(Marc Bouissou and Lena Buffoni)

• Modelica models augmented with reliability properties can be used to generate

reliability models in Figaro, which in turn can be used for static reliability analysis

• Prototype in OpenModelica integrated with Figaro tool (which is becoming open-
source)

Modelica Library

Application

Modelica model

Simulation

Figaro Reliability

Library
Reliability model

in Figaro
FT generation FT processing

Automated

generation

48

General Tool Interoperability & Model Exchange

Functional Mock-up Interface (FMI)

• FMI development was started by ITEA2 MODELISAR project. FMI is a

Modelica Association Project now

• Version 1.0

• FMI for Model Exchange (released Jan 26,2010)

• FMI for Co-Simulation (released Oct 12,2010)

• Version 2.0

• FMI for Model Exchange and Co-Simulation (released July 25,2014)

• > 60 tools supporting it (https://www.fmi-standard.org/tools)

Engine
with ECU

Gearbox
with ECU

Thermal
systems

Automated
cargo door

Chassis components,
roadway, ECU (e.g. ESP)

etc.

functional mockup interface for model exchange and tool coupling
courtesy Daimler

49

FMI in OpenModelica

• FMI Model Exchange implemented (FMI 1.0 and FMI 2.0)

• A prototype of FMI 2.0 co-simulation is available

• Ongoing work to support full FMI 2.0 co-simulation

• The FMI interface is accessible via the OpenModelica scripting

environment and the OpenModelica connection editor

50

OpenModelica Simulation in Web Browser Client

OpenModelica compiles

to efficient

Java Script code which is

executed in web browser

MultiBody RobotR3.FullRobot

51

Modelica3D Library with OpenModelica

• Modelica 3D

Graphics Library

by Fraunhofer

FIRST, Berlin

• Part of

OpenModelica

distribution

• Can be used for

3D graphics in

OpenModelica

52

Problems

Solved problems Result plot Export result data .csv

OMOptim – Parameter Sweep Design Optimization

Here

Pareto

front

optimiza-

tion

53

Optimization of Dynamic Trajectories Using

Multiple-Shooting and Collocation

• Minimize a goal function subject to model

equation constraints, useful e.g. for NMPC

• Multiple Shooting/Collocation

• Solve sub-problem in each sub-interval

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

1 2 4 8 16

MULTIPLE_COLLOCATION

ipopt [scaled] jac_g [scaled]

Example speedup, 16 cores:

In OpenModelica 1.9.1

beta release Jan 2014.

54

OMnotebook Interactive Electronic Notebook

Here Used for Teaching Control Theory

55

MetaModelica Language Extension for

Model Transformations and Advanced Applications

• Large-scale existing application – OpenModelica compiler

written in MetaModelica, compiling itself

• MetaModelica language extension

• single assignment equations (with opt. patterns)

• tree data structures, garbage collection

• pattern equations

• matching, backtracking

• Very efficient portable implementation (compiles to C)

• Now ongoing standardization in Modelica Association

56

OpenModelica Model Parallelization

Faster Simulation on Multi-Core

Automated parallelization of models
Parallelizing numeric Jacobian

computations in simulation

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1 2 3 4 6 8 10 12 14

Speedup ScalableTestSuite
N=39 nnz= 818

Sp…

number of

threads
Speedup about 4

using 8 threads

57

Faster Simulation – Compiling Modelica to Multi-Core
Speedup on NVIDIA, Modelica Model, Generated Code, n Problem Size

58

Recent Large-scale ABB OpenModelica Application
Generate code for controlling 7.5 to 10% of German Power Production

ABB OPTIMAX PowerFit

• Real-time optimizing control of large-
scale virtual power plant for system
integration

• Software including OpenModelica now
used in managing more than 2500
renewable plants, total up to 1.5 GW

High scalability supporting growth

• 2012: initial delivery (for 50 plants)

• 2013: SW extension (500 plants)

• 2014: HW+SW extension (> 2000)

• 2015: HW+SW extension,
incl. OpenModelica generating optimizing
controller code in FMI 2.0 form

Manage 7.5% - 10% of German Power

• 2015, Aug: OpenModelica Exports FMUs
for real-time optimizing control (seconds)
of about 5.000 MW (7.5%) of power in
Germany

59

Industrial Product with OEM Usage of OpenModelica –
MIKE by DHI, WEST Water Quality

• MIKE by DHI, www.mikebydhi.com, WEST Water Quality modeling and

simulation environment

• Includes a large part of the OpenModelica compiler using the OEM license.

• Here a water treatment effluent and sludge simulation.

60

Part III

Dynamic Verification/Testing of

Requirements vs Usage Scenario Models

Wladimir Schamai, Lena Buffoni, Peter Fritzson

and contributions from MODRIO partners

61

OpenModelica and Papyrus Based Model-Based

Development Environment to Cover Product-Design V

Product

models

Requirements

models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business

Process

Control

Requirements

Capture

Model-Driven

Design

(PIM)

Compilation

& Code Gen

(PSM)

System

Simulation

Software &

Syst Product

Feedback

Platform

models

Process

models

Product

models

Requirements

models

Unified Modeling: Meta-modeling& Modelica& UML

Business

Process

Control

Requirements

Capture
Model

-
Driven

Design

Compilation

& Code Gen

System

Simulation

Software &

System Product
Platform

models
Process

models

Specification

Design

Design
Refinement

Component verification

Subsystem level integration and

verification

Subsystem level integration test

calibration and verification

Product verification and

deployment

Maintenance

Realization

Detailed feature design and

implementation

Architectural design and

system functional design

Preliminary feature design

System

requirements

Level of Abstraction

Documentation, Version and Configuration Management

Verification

Integration

Calibration

Experience Feedback

62

Business Process Control and Modeling

Product

models

Requirements

models

Unified Modeling: Meta-modeling & Modelica & UML & OWL

Business

Process

Control

Requirements

Capture

Model-Driven

Design

(PIM)

Compilation

& Code Gen

(PSM)

System

Simulation

Software &

Syst Product

Feedback

Platform

models

Process

models

Product

models

Requirements

models

Unified Modeling: Meta-modeling & Modelica & UML

Business

Process

Control

Requirements

Capture
Model

-
Driven

Design

Compilation

& Code Gen

System

Simulation

Software &

System Product
Platform

models
Process

models

Metso Business model & simulation

VTT Simantics Graphic Modeling Tool

OpenModelica based simulation

Simulation of 3 strategies with

outcomes

VTT Simantics

Business process modeler

OpenModelica

compiler & simulator

63

Requirement Capture

Product

models

Requirements

models

Unified Modeling: Meta-modeling & Modelica & UML & OWL

Business

Process

Control

Requirements

Capture

Model-Driven

Design

(PIM)

Compilation

& Code Gen

(PSM)

System

Simulation

Software &

Syst Product

Feedback

Platform

models

Process

models

Product

models

Requirements

models

Unified Modeling: Meta-modeling & Modelica & UML

Business

Process

Control

Requirements

Capture
Model

-
Driven

Design

Compilation

& Code Gen

System

Simulation

Software &

System Product
Platform

models
Process

models

OpenModelica based simulation

vVDR (virtual Verification of

Designs against Requirements)

in ModelicaML UML/Modelica

Profile, part of OpenModelica

Design Model

Scenario Model

Requirement

Models

Verification Model

Binding

Provider from

design model

Client from requirement model

64

OpenModelica – ModelicaML UML Profile
Based on Open-Source Papyrus UML and OpenModelica

• ModelicaML is a UML Profile for SW/HW modeling
• Applicable to “pure” UML or to other UML profiles, e.g. SysML

• Standardized Mapping UML/SysML to Modelica
• Defines transformation/mapping for executable models

• Being standardized by OMG

• ModelicaML
• Defines graphical concrete syntax (graphical notation for diagram) for

representing Modelica constructs integrated with UML

• Includes graphical formalisms (e.g. State Machines, Activities,
Requirements)

• Which do not yet exist in Modelica language (extension work ongoing)

• Which are translated into executable Modelica code

• Is defined towards generation of executable Modelica code

• Current implementation based on the Papyrus UML tool + OpenModelica

65

Example: Simulation and Requirements Evaluation

Req. 001 is instantiated 2 times

(there are 2 tanks in the system)

tank-height is 0.6m

Req. 001 for the tank2 is

violated

Req. 001 for the tank1 is

not violated

66

ModelicaML: Graphical Notation

a

Structure

Behavior

Requirements

67

Example: Representation of System Structure

Interconnections

Inheritance

Components

68

Example: Representation of System Behavior

State

Machine of

the Tank

State Machine

of the Controller

Conditional

Algorithm (Activity

Diagram)

69

Example: Representation of System Requirements

Textual Requirement Formalized Requirement

70

vVDR Method –

virtual Verification of Designs vs Requirements

Formalize
Requirements

Formalize Designs

Formalize
Scenarios

Create Verification
Models

Execute and
Create Report

Analyze Results

RMM
Requirement

Monitor Models

Scenario

Models
SM

Designs

Alternative

Models

DAM

VM Verification Models

AUTOMATED

Task Created Artifact

Goal: Enable on-demand

verification of designs

against requirements

using automated model

composition at any time

during development.

AUTOMATED

Actor

Reports

*

71

Challenge

We want to verify different design alternatives against sets of requirements

using different scenarios. Questions:

1) How to find valid combinations of design alternatives, scenarios and requirements in

order to enable an automated composition of verification models?

2) Having found a valid combination: How to bind all components correctly?

…

Create Verification
Models

… RMM

1. Verification

Model
VM DAM SM

2. Verification

Model
VM …

…

Requirement

Models

Scenario

Models

Designs Alternative

Models
DAM

SM
DAM

DAM
SM

SM

SM
SM

SM
RMM 1

RMM

RMM

RMM

RMM
SM

RMM

RMM

RMM

RMM

… …

n. Verification

Model

*

72

Composing Verification Models
main idea

• Collect all scenarios, requirements, import mediators

• Generate/compose verification models automatically:
• Select the system model to be verified

• Find all scenarios that can stimulate the selected system model (i.e., for

each mandatory client check whether the binding expression can be inferred)

• Find requirements that are implemented in the selected system model (i.e.,

check whether for each requirement for all mandatory clients binding

expressions can be inferred)

• Present the list of scenarios and requirements to the user
• The user can select only a subset or scenarios or requirements he/she

wishes to consider

73

Generating/Composing Verification Models
algorithm

74

Simulation and Report Generation in ModelicaML

Verification models are

simulated.

The generated Verification

Report is a prepared summary of:

• Configuration, bindings

• Violations of requirements

• etc.

75

Continuous and Discrete Time Locators for

Time-related Requirements

• A Continuous Time Locator(CTL) specifies one or more time

intervals

• Time intervals have a duration

• They usually have a position in time,

but a sliding time window defines any

time period of a given duration

• A Discrete Time Locator (DTL) defines one or more positions in time

and has no duration

• An event is associated with a DTL

that specifies when the event occurred

• The difference between events and

DTLs is that a DTL is not an object

• That position may be relative to the initialisation of the system or

to another DTL

time

time

duration

time

76

Time Locators Expressed in Modelica

Special FORML-L syntax Standard Modelica syntax

duringAny duration duringAny(duration)

after event after(event)

after event1 untilNext event2 afterUntil(event1, event2)

after event for duration afterFor(event, duration)

after event within duration afterWithin(event, duration)

until event until(event)

every duration1 for duration2 everyFor(duration1, duration2)

when condition changes Maps to Modelica if

77

From Text to Simulated Requirement

– Modelica Extended with new Operators

model P2a extends Condition;

input ConditionStatus bPSNeeded, sARequired, set1Powered;

equation

status = if afterWithin (bPSNeeded == notViolated and

sARequired == notViolated, 20) then

if set1Powered == notViolated then

notViolated else violated else undefined;

end P2a;
BPS.Needed and SA.Required

s20 s20

t = 0 time

BPS.Needed and SA.Required

Set1.Powered must becometrue within the

timeframe s20 and remain true afterwards

From a text requirement expressing a condition:

A - In the absence of any Backup Power Supply (BPS) component failure or in the presence of
a single sensor failure, when the BPS is not under maintenance, in case of loss of MPS, and if
safety injection is required, Set1 must be powered within 20 s

78

From Text to Simulated Requirement –

Requirement not Violated – OpenModelica Simulation

Within 20s

BPS Powered

Requirement

undefined

outside the

specified time

window

Requirement

validated

BPS.Needed and SA.Required

s20

t = 0 time
t = 10 t = 25

Set1.Powered

3-valued logic

prototype:

1 – true

0 – false

-1 – undefined

Linköping university

Industrial Use Case for Requirements

Verification and Model Composition in ModelicaML

OPENPROD-Project Case Study

•Wladimir SCHAMAI (EADS Innovation Works, Germany)

•Peter Fritzson (Linköping University)

•Audrey JARDIN (EDF - R&D, France)

•Daniel BOUSKELA (EDF - R&D, France)

80

EDF Use Case – System Description of SRI system
(Intermediate Cooling System) in turbine hall of a nuclear power plant

Heat exchanger 1

Heat exchanger 2

Pump 1

Pump 2

Pump 3

Source of heat

LC 2 LC 1

LC 3

LC 5

LC 6

LC 4

Sensor of
temperature

Regulating valve 1

Regulating valve 2

Bypass valve

Leak

Users valve

Feeding tank Feeding on-off valve
TOR alimentation

Tube T2 Tube T1
Tube
T5

Tube
T6

Tube T4

Tube
T8

 Cooling system

Water
feeding

Water

circulation

Auxiliary
equipment

LC : Limit condition

81

System Requirements

- #002: The set point of the SRI water temperature must be held at a

minimum value of 17°C.

- #003: In a normal operating mode, the water temperature of the SRI

circuit should be between Ts - e and Ts + e (Ts : set point temperature).

- #0083: A pump must not start more than 3 times per hour.

- #013: In a normal operating mode, there must not be less than 2

operating pumps during more than 2s.

- #007: The water temperature must not vary more than 10°C/hour.

82

SRI Case Study Conclusion and Lessons Learnt

• Showed applicability of vVDR method to realistic industrial

applications

• ModelicaML is a promising prototype implementation of the vVDR

method, needs improved usability and stability

• Lessons learnt:

• Formalized requirements should be tested separately in order to

ensure correctness

• Model validity asserts must be included

• Parameterized requirement monitors can be re-used as library

components (later realized in MODRIO project)

• Later work, now ongoing

• Stochastic aspects (model uncertainties, tolerances in

requirements, ...) should be taken into account

83

Part IV

Equation-Based Model Dynamic Debugging

84

Need for Debugging Tools

Map Low vs High Abstraction Level

• A major part of the total cost of software projects

is due to testing and debugging

• US-Study 2002:

Software errors cost the US economy annually~ 60 Billion $

• Problem: Large Gap in Abstraction Level

from Equations to Executable Code

• Example error message (hard to understand)

Error solving nonlinear system 132

time = 0.002

residual[0] = 0.288956

x[0] = 1.105149

residual[1] = 17.000400

x[1] = 1.248448

...

85

Example Symbolic Transformations

with Compiler Debug Trace

(1) substitution:

y + der(x * (time * z))

=>

y + der(x * (time * 1.0))

(2) simplify:

y + der(x * (time * 1.0))

=>

y + der(x * time)

(3) expand derivative

(symbolic diff):

y + der(x * time)

=>

y + (x + der(x) * time)

(4) solve:

0.0 = y + (x + der(x) * time)

=>

der(x) = ((-y) - x) / time

Example: 0 = y + der(x * time * z); z = 1.0;

• Complicated to understand source of some errors

• Efficient trace of transformations < 1 % overhead

86

Mapping dynamic run-time error to source model position

Integrated Static-Dynamic

OpenModelica Equation Model Debugger

Showing

equation

transfor

mations

of a

model:

Efficient

handling

of

Large

Equation

Systems

87

Example – Detecting Source of Chattering

(excessive event switching) causing bad performance

• Lkjlkjlj

• Lkjlkj

• lkjklj

equation

z = if x > 0 then -1 else 1;

y = 2 * z;

…

88

Error Indication – Simulation Slows Down

89

Transformations Browser – EngineV6 Overview

(11 116 equations in model)

90

Performance Profiling
(Here: Profiling all equations in MSL 3.2.1 DoublePendulum)

91

• ABB OPTIMAX® provides advanced model based

control products for power generation and water utilities.

• ABB: “OpenModelica provides outstanding debugging

features that help to save a lot of time during model

development.”

ABB Commercial Application Use of Debugger

92

Equation Model Debugging on Siemens Model
(used on Siemens Evaporator test model, 1100 equations)

92

93

Equation Model Debugger on Siemens Model
(Siemens Evaporator test model, 1100 equations)

Pointing out the buggy equation

y = u1/u2;

that gives division by zero

94

Performance Profiling for faster Simulation
(Here: Profiling equations of Siemens Drum boiler model with evaporator

• Measuring performance of equation blocks to find bottlenecks

• Useful as input before model simplification for real-time applications

• Integrated with the debugger to point out the slow equations

• Suitable for real-time profiling (collect less information), or a complete

view of all equation blocks and function calls

Conclusion from the evaluation:

“…the profiler makes the process

of performance optimization

radically shorter.”

95

Part V

New Project OPENCPS

Open Cyber-Physical Development

Integrating

OpenModelica (Modelica) – Papyrus (UML)

New ITEA3 Project: OPENCPS
Open Cyber-Physical System Model-Driven Certified Development

2016-2018

Industrial Coordinator

Saab AeroSpace, Magnus Eek

Research Coordinator

Linköping Univ, Peter Fritzson

97

OPENCPS – Integrating OpenModelica and Papyrus

for Cyber-Physical System Development

Great industrial

interest in open
source tools:
• Control of features

• Industry collaboration

Development tools

are complex and
critical for industry:
• Interoperability

• Tool vendor lock-ins

• Life cycle support

Challenges in cyber-

physical system
development:
• Complexity

• High demands

• Cost efficiency

Development Tools
critical for industry

Challenges in CPS

Open Source

The two leading open source tools OpenModelica and Papyrus will be

significantly developed and integrated for cyber-physical development

98

OPENCPS WP3: Translation and Validation of Code

for Real-Time Embedded Applications

Goal: OpenModelica production code generation for advanced control

applications supporting the translation validation of discrete and

continuous-time models based on (acausal) equations.

99

Summary and Questions

Hybrid

Modeling

Visual Acausal

Component

Modeling

Multi-Domain

Modeling

Typed

Declarative

Textual Language Thanks for listening!

www.modelica.org – Language, Standard Library

www.openmodelica.org – Open Source Tool

Modelica® is a registered trademark of the Modelica Association

http://www.modelica.org/
http://www.openmodelica.org/

