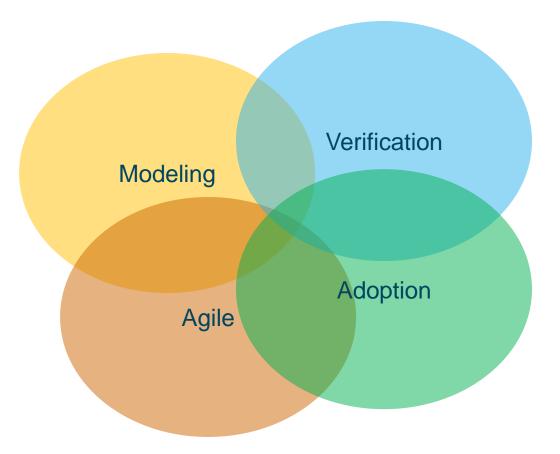


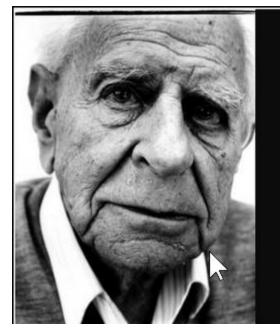
Effective Embedded Model-Based Development

Bruce Powel Douglass, Ph.D. Chief Evangelist, Global Technology Ambassador IBM Internet of Things (IoT) bruce.douglass@us.ibm.com

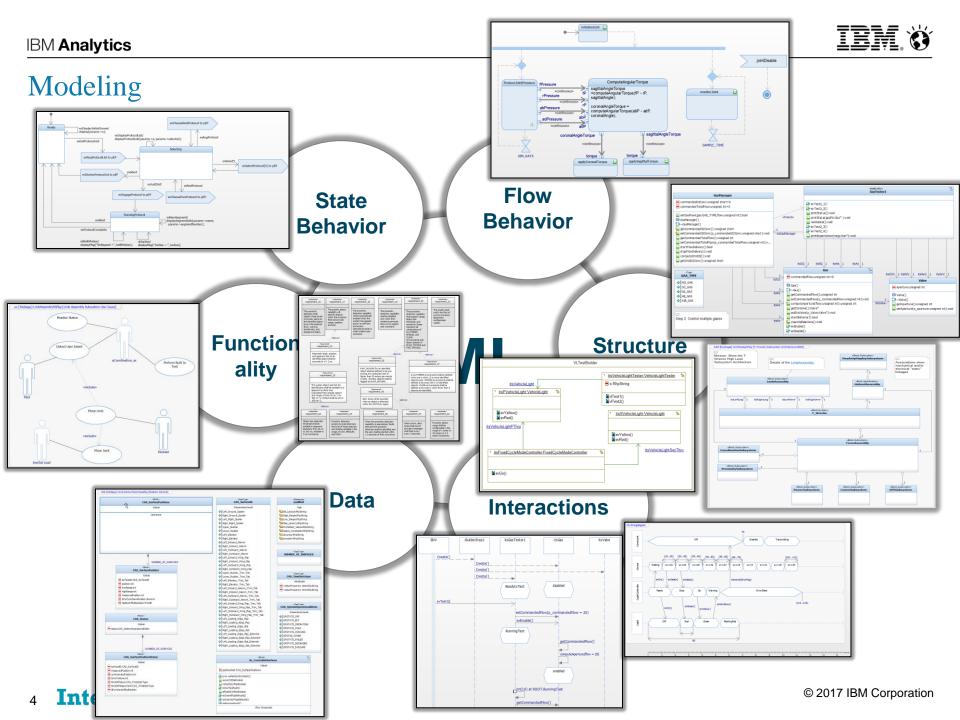
Twitter: @IronmanBruce


Website:: www-01.ibm.com/software/rational/leadership/thought/brucedouglass.html

"Dance like nobody is watching, Sing like you're alone in the shower, Engineer like you're a passenger hurtling though space in a speeding tube of death that you designed."


Law of Douglass # 135

Key Topics


All Good Models are Falsifiable

In so far as a scientific statement speaks about reality, it must be falsifiable; and in so far as it is not falsifiable, it does not speak about reality.

Karl Popper

AZQUOTES

IBM. Ö

Why Model? Let's compare Modeling versus Textual Specification

You meet with an architect to design your dream home.

2 months later he comes up with ...

I. Proje Clos		Project Record Drawings: Indicate [Flement of the Work] on project record drawings Refer to Section 01770 -
J. Oper	1 "1	Probe Record Drawnons, indicated Februari of the work of Dirones Dectify Drawnons, Reperto Record 07777 * 1
tion - Bas	[.]	 Project Record Drawings: Indicate [_Element_of_the_Work_] on project record drawings. Refer to Section 01770 - Closeout Procedures.
K. Warr [017		J. Operation and Maintenance Data: Submit for [_Element_of_the_Work_]. Comply with general requirements of Section [01770 - Closeout Procedures] [01783 - Operation and Maintenance Data] [and requirements of] [Section 15050 - Basic Mechanical Materials and Methods] [and] [Section 16050—Basic Electrical Materials and Methods].
0 QUA		
DES		K. Warranty Documents: Submit for all manufactured units and equipment specified in this Section. Refer to Sectior [01770—Closeout Procedures] [01785 - Warranties and Bonds].
IFY I		1.10 QUALITY ASSURANCE
A. Qual [insta simil to Se	A	DESCRIBE SPECIFIC REQUIREMENTS FOR QUALITY ASSURANCE MEASURES FOR WORK SPECIFIED IN THIS SECTION. SPECIFY SHOP OR FACTORY TESTS AND INSPECTIONS IN PART 2 - PRODUCTS AND SPEC- IFY FIELD TESTING AND INSPECTION ACTIVITIES IN PART 3 - EXECUTION.
B. Regu 0141	L ,	A. Qualifications: [Contractor-employed designers] [manufacturer-employed designers] [manufacturers] [fabricators [installers] [applicators] shall have a minimum of [3] [5] [—] years full time experience [producing] (executing] work o similar scope and complexity, [and shall be certified] [by the system manufacturer] [in accordance with] []. Refe
	В	to Section 01450—Quality Control.
C. Certi testir		B. Regulatory Requirements: Regulatory Requirements, Comply with specific requirements of []. Refer to Section 01410 - Regulatory Requirements.
D. Field [Owr estat	1 _	C. Certifications: [Applicator] [Installer] [Fabricator] [] shall be certified [by the manufacturer] [by an independent testing service] to meet or exceed the minimum requirements specified herein.
E. Mock show Appr after	ν Έ	D. Field Samples: Prepare field samples of [_Element_of_the_Work_] for [review] [and] [selection] by the [Architect [Owner] [] of [range of] [color] [texture] [and] [finish]. Locate field samples at []. Approved sample[s] shal establish standards by which the Work will be judged. Note location of field samples on project record drawings.
F. [Pre- [revie	-	E. Mock-Ups: Construct full-size [working] mock-up[s] of [] for review and approval by [Architect] [Owner] [] showing [operation] [construction] [coordination and interface with adjoining Work]. Construct mock-ups at [] Approved mock-up[s] shall serve to establish standards by which the Work will be judged. Remove mock-up[s] only after Work is substantially complete and with approval of [Architect] [Owner] [].
interf tion] relate		F. [Pre-Installation] [Pre-Application] Conference: Convene a conference at [the project site] [the Architect's office [], [7] [10] [] days prior to starting [installation] [application], to review the Drawings and Specification, the
1 DELI		reviewed submittals, [field samples,] [mock-ups], manufacturer's instructions and recommendations, sequencing and interface considerations and project conditions. Conference shall be attended by supervisory, [installation] [fabrica- tion] [application] and quality control personnel of Contractor and all subcontractors performing this and directly
DES SEC		related work. [Construction Manager] [Architect] [Owner] [] will attend the conference.
A. Pack	'	1.11 DELIVERY, STORAGE AND HANDLING
DES	,	DESCRIBE BELOW SPECIAL PROVISIONS FOR PACKING AND SHIPPING PRODUCTS SPECIFIED IN THIS SECTION.
IN TH	-	A. Packing and Shipping: [].
B. Acce	. В.	DESCRIBE BELOW SPECIAL PROVISIONS FOR ACCEPTANCE AT PROJECT SITE OF PRODUCTS SPECIFIED IN THIS SECTION.
		B. Acceptance at Site: [].

A 650 page specification document with 10,000 requirements:

- ... indented by 7 meters from the west border of the premises, there is a left corner of the house
- ... The entrance door is indented by another 3.57 meters
- ... 2.30 meters wide and 2.20 meters high, left-hand hinge, opening to the inside
- ... If you come in, there are two light switches and a socket on your right, at a height of 1.30 meters

• • •

Is this the house you want?

- Are the requirements correct?
- Accurate?
- Consistent?
- How can you tell?

Modeling versus Textual Specification

• Then you call another architect... And two weeks later he comes with this:

- The second architect used *Modeling* to show different *Views* of the house based on an underlying collection of semantically-complete interconnected engineering data
 - Structural
 - Floor layout
 - Electrical
 - Plumbing and water flow
 - Heating capacity and flows

So What IS a Model then?

Modeling is the development of a semantically correct set of engineering data of relevant systems and their properties

Models have views (e.g. diagrams)

Diagrams show subsets of eng. data

Diagrams have singular purpose

Diagrams answer questions

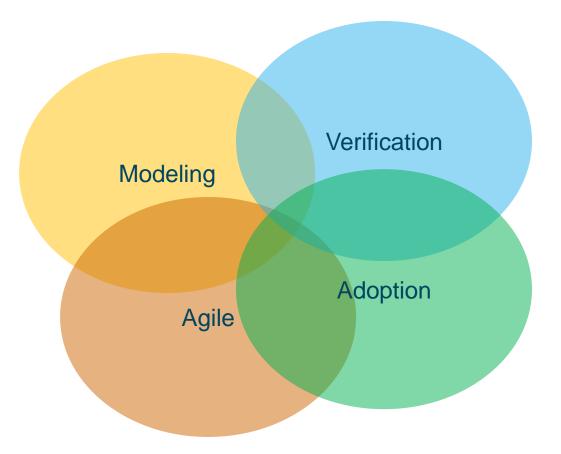
Diagrams support specific reasoning

Models have scope

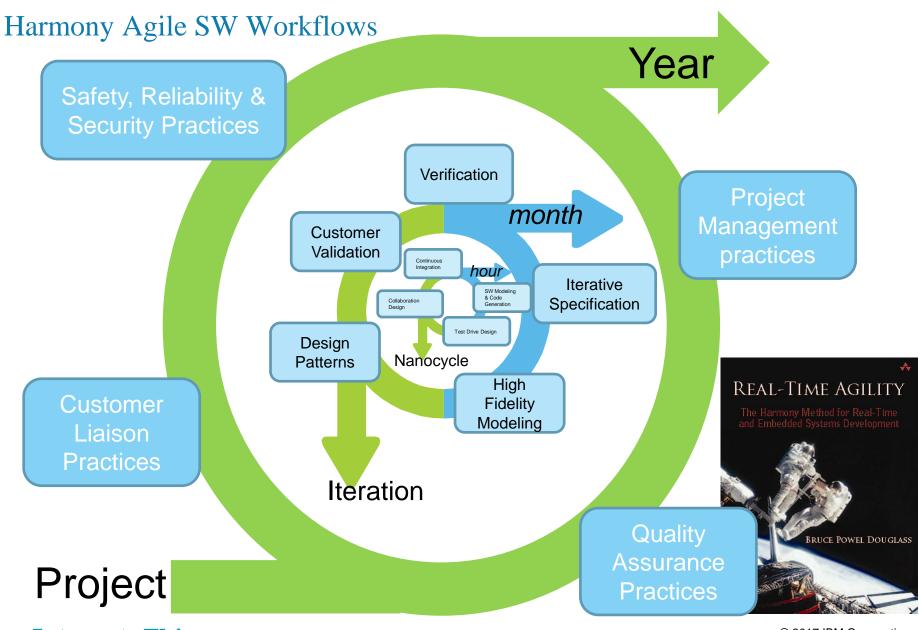
Models have purpose

Models have accuracy

Models have fidelity

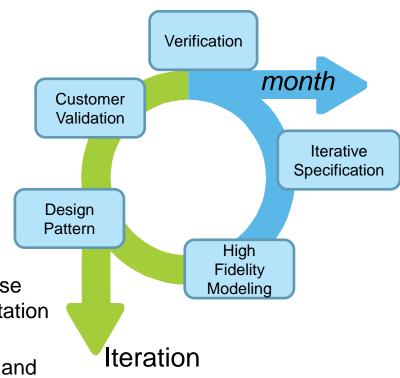

Models are falsifiable

Models are verifiable


Models are interconnected data!

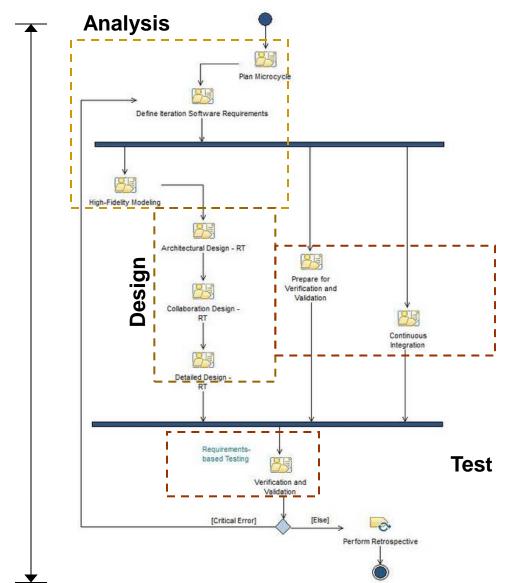
Key Topics

IBM. Ö



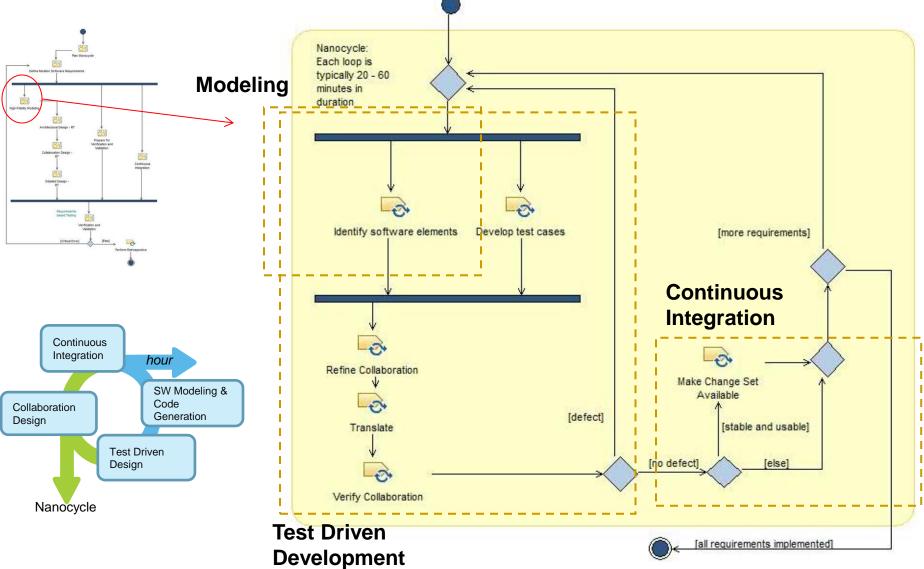
10 InternetofThings

© 2017 IBM Corporation

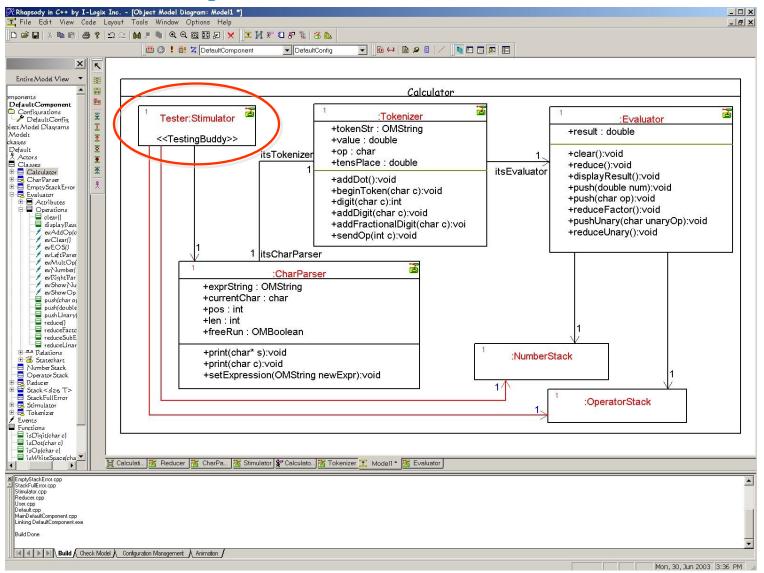

Incremental Development

- Incremental (aka Spiral or Iterative) takes a hard problem and divides it up into a series of increments, each of which
 - Identifies a mission:
 - Implement a coherent set of requirements
 - · Remove a set of identified defects
 - · Reduce a set of identifies risks
 - Targets one or more platforms
 - · Implements one or more architectural aspects
 - Plans a schedule with workers performing the work (usually in 4-6 weeks)
 - Creates a functional, executing model and code base of the solution to the mission (along with implementation code, test cases, test outcomes and other stuff)
 - Refines the model to optimize it against the design and quality-of-service constraints (qualities of service)
 - Tests the resulting increment against new and existing requirements

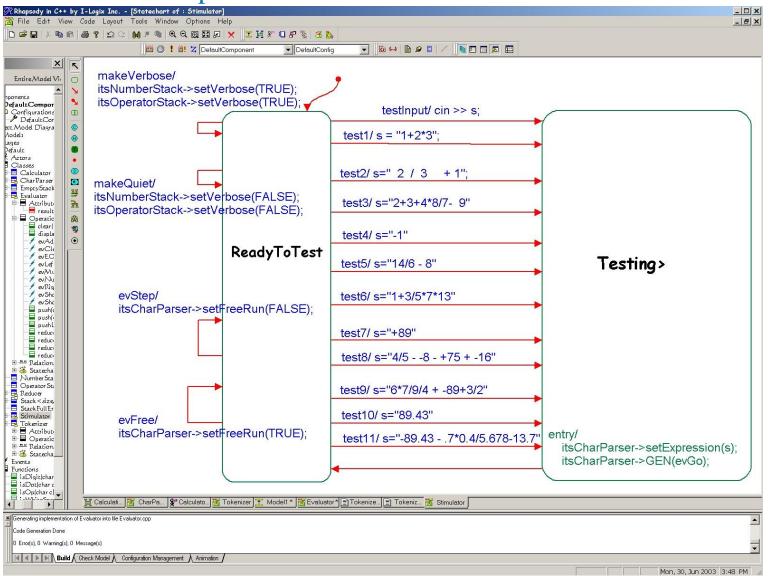
Incremental Development with Harmony®



12 Internet of Things


Typically 4-6 weeks

IBM Analytics


Agile Practices of the Harmony Nanocycle

Test Driven Development

Test Driven Development

Defensive Design

- Quality cannot be effectively added later into developed software
- Defensive design is a practice that improves software robustness
 - Constant execution
 - Execute after small incremental changes, typically *at minimum* several times per day
 - Explicitly state pre- and post-conditions and class invariants
 - State assumptions for correct execution (e.g. memory needs, parameter value ranges, etc)
 - Explicitly *verify at run-time* the expectations and invariants and take corrective action as appropriate
 - NEVER ignore error indications
 - Use Test-Driven Development
 - Develop your tests prior to, or in conjunction with, the design of the software elements

Dynamic Planning

- Harmony® addresses dynamic planning with
 - 2 Level scheduling / planning
 - Overall project (e.g. initial planning + the set of iterations + deployment
 - Detailed just-in-time microcycle planning
 - Each iteration is planned around a *mission statement*, including
 - Use case/user stories to be implemented
 - Defects to be removed
 - · Architectural concepts to be realized
 - Target platform to be supported (incl. hardware drivers as needed for hw integration and test)
 - Risks to be reduced via spikes (risk mitigation activities)
 - That your plans are wrong (to some degree) is expected, and results in plan updates
 - Actual progress ("truth on the ground") is monitored via metrics such as
 - Actual time (effort) vs estimated time (effort)
 - Defect density
 - Project velocity
 - Plans are updated at least every microcycle in the Increment Review ("Party Phase") task

Risk Management

- Projects don't fail at an instant in time they fail gradually over months or years
- Most projects go awry because of predictable problems that were never addressed
- Practice: The best way to reduce risk is to manage it:
 - Identify the risks
 - Define spikes (risk mitigation activities)
 - Plan spikes execution in schedule
 - Heed the spike outcomes
 - Frequently look for new risks

Risk Management

Task: Plan For Risk Reduction

This task plans for the management of risks during the project.

	Expand All Sections	Collapse All Sections
Purpose		
The purpose of this task is to identify and prioritize project risks and how they will be handled, an plan.	d capture this information in t	ne risk management

Back to top

Relationships			
Roles	Main: • Project Manager	Additional:	Assisting:
Outputs	Risk Management Plan		

Back to top

■ Steps	
	🕀 Expand All Steps 📄 Collapse All Steps
Hentify key project hazards	
Determine likelihood of key project hazards	
Compute key project risks	
Rank project risks	
Specify risk mitigation activities for key project risks	
Write risk management plan	

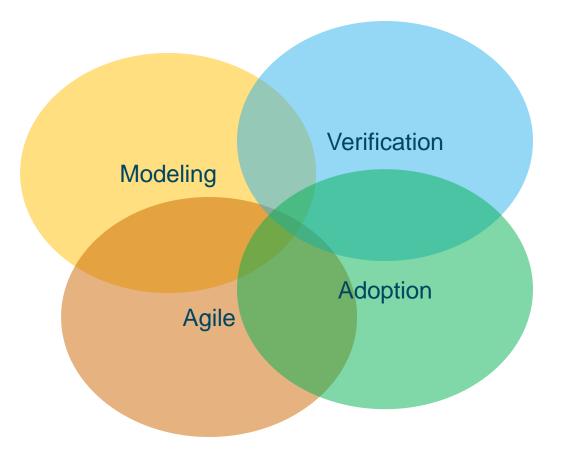
Risk Management

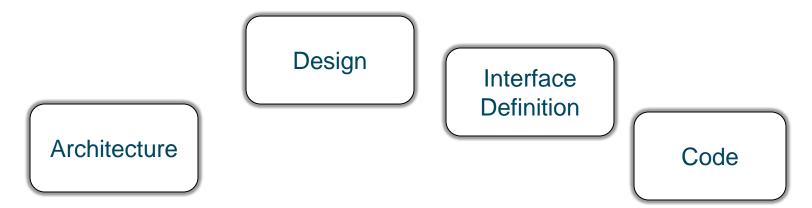
Project Risk List

ID	Date	Name	Description	Impact	Probability	Magnitude	Owner	Mitigation Strategy
1	1/1/201 1	CORBA Performance	The distributed PID control loop must have response times in < 2 ms for stability. Since elements are distributed using CORBA, this may lead to loss of the aircraft if performance is too low	4	60%	2.4	Sam	In microcycle 2, implement the effector smoothing loop over CORBA and measure the delay added
2	1/3/201 1	UML Experience	The team is using UML for the first time on this project and if it doesn't work well, this could add significantly to the project time	3	90%	2.7	Joe	In prepsiral planning, engage IBM for Rhapsody and UML training with a Rapid Deployment Package to kick start the project
3	2/4/201 1	Chips going end of life	Chip vendor has indicated that the 1753 bus chip used in the design will go end of life in 2014. We have to maintain the system for 20 years. We either need to stockpile enough chips or engineer a replacement design.	2	70%	1.4	Susan	In microcycle 4, evaluate alternatives and select one for going forward.
4	2/5/201 1	Customer schedule is aggressive	Customer schedule is optimistic. We need to address this either by changing the expectations or figuring out how to satisfy the schedule.	4	80%	3.2	Maggy	In prespiral planning, work with the customer to see if the projet can be delivered in phases, or if ambitious features can be cut.
5	2/5/201 1	Aerlion actuator has slow response time	The airfoil design is unstable and requires fast responses to maintain aircraft stability. The current actuator design may not be able to support the required QoS	5	30%	1.5	Sam	In microcycle 3, talk with control people to determine required response rate and airfoil engineers to determine alternative actuator design if necessary

Architecture Through Design Patterns

- Harmony identifies 3 levels of design optimization
 - Architectural
 - Mechanistic
 - Detailed
- Architecture is divided into 5 primary views
 - Each view is characterized by its own set of design patterns, approaches, and technologies
 - Secondary architecture views include
 - Information Assurance & Security
 - Data Management
 - Quality of Service Management
 - Error and exception Management


X


Each view has its own design patterns and technologies

Key Topics

Code is not the only work product that needs verification and validation

What do we mean by "verification & validation" of work products?

Semantic Verification

- "correct" (*compliance in meaning*) Performed by engineering personnel Three basic techniques
- Semantic review (subject matter expert & peer) most common, weakest means
- **Testing** requires executability of work products, impossible to fully verify
- Formal methods strongest but hard to do and subject to invariant violation

Syntactic Verification

- "well-formed" (compliance in form)
 Performed by quality assurance personnel
- Audits work tasks are performed as per plan and guidelines
- **Syntactic review** work products conform to standard for organization, structure and format

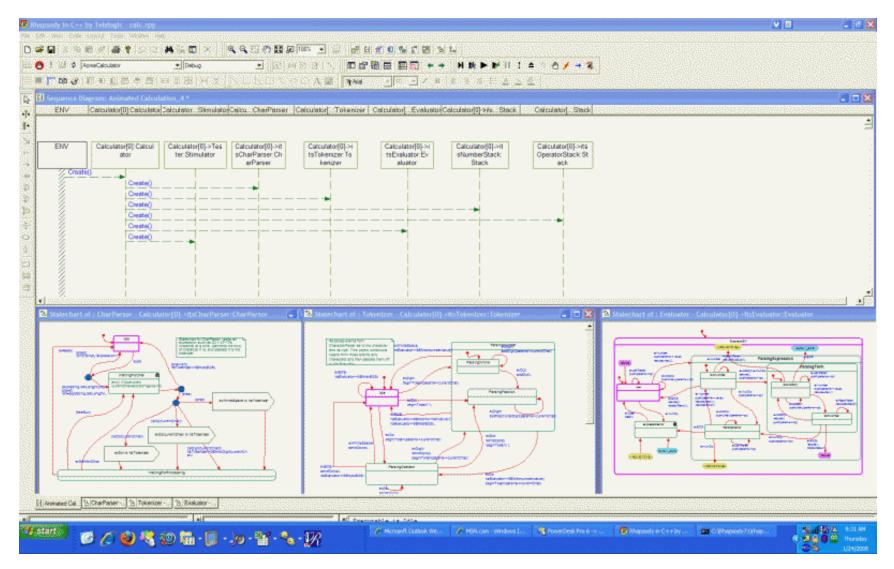
24 Internet of Things

Validation

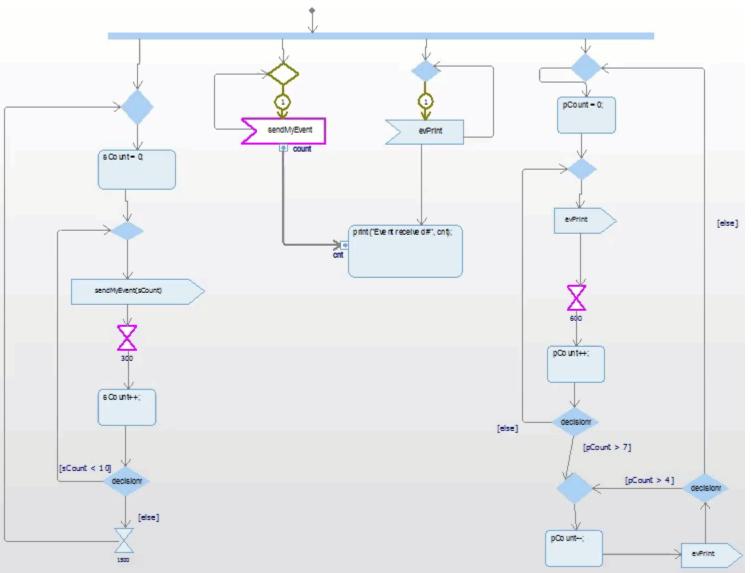
Semantic

Verification

Validation


- Validation
- "meets the stakeholder need" Performed by customer + engineering Some common techniques

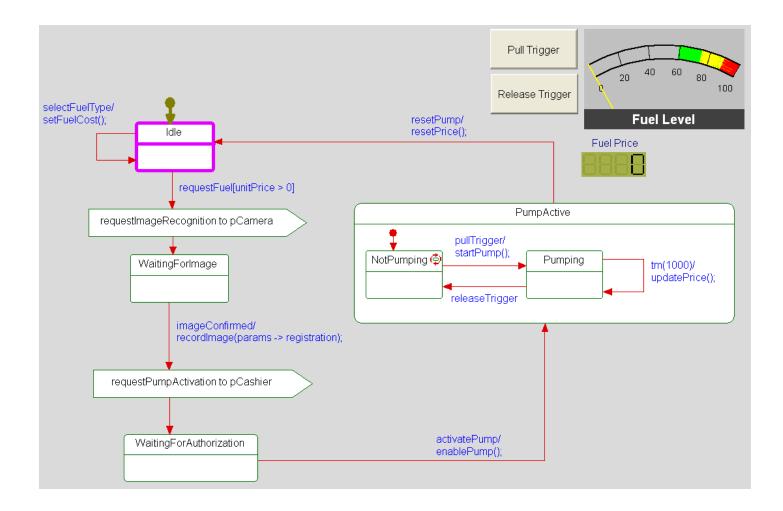
Syntactic


Verification

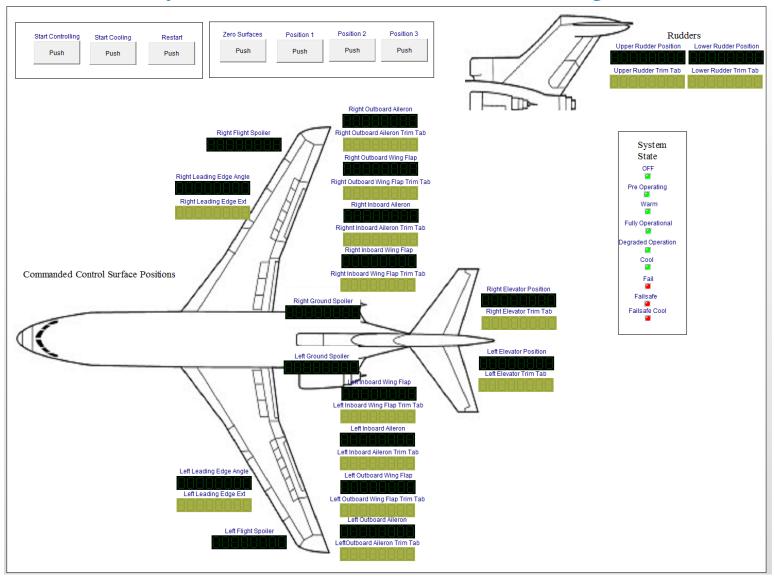
- Review (subject matter expert & customer) most common, weakest
- **Simulation** show simulated input → outputs
- **Sandbox** exploratory usage in constrained environment
- Flight test demonstration of system capabilities
- **Deployment** early usage of system of partial capability

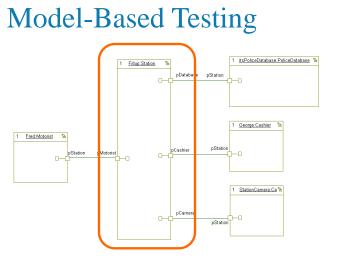
Executable Models are an important subset of Computable Models

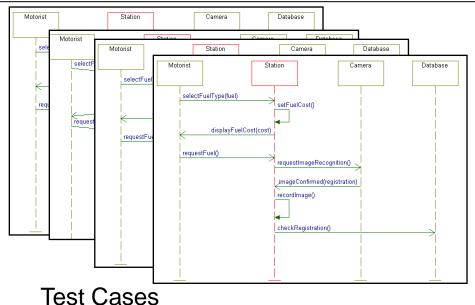
Executable Models



26 Internet of Things


© 2017 IBM Corporation


Executable Models

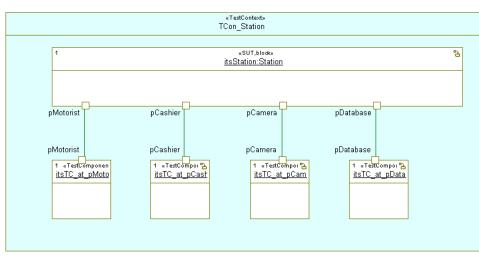

Control Surfaces System Simulation Control Panel Diagram

System Under Test (SUT)

Test Case Result

Test Case: SunnyDayTestCase

17:28:53, Tuesday, March 09, 2010

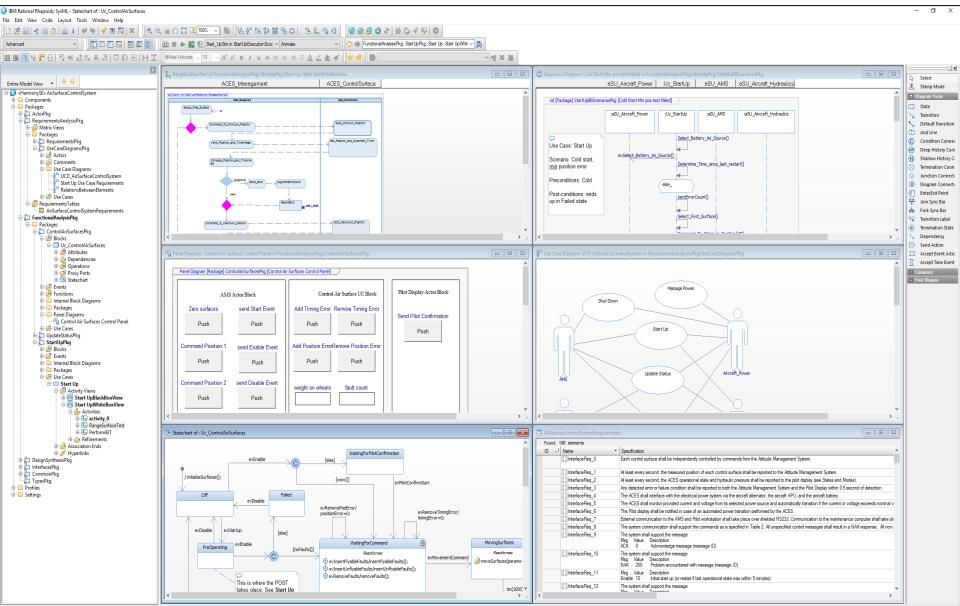

Enviroi	nment Info		
Test executed on machine:	VIRTUALXP		
Test executed by user:	andyl		
Used OS version:	Windows 2000 / Windows XP		
Used Rhapsody version:	7.5, build 1164537		
Used TestConductor version:	2.4, build 1434		
Teste	ed Project		
Project:	Project: TCTemp		
Active Component:	TPkg_Station_Comp		
Active Configuration:	DefaultConfig		
SUS US	sed in test		
SUS US TPkg_Station::SD Motorist Arrives Sunny Summary Info			
TPkg_Station::SD Motorist Arrives Sunn	y Day		
TPkg_Station::SD Motorist Arrives Sunn Summary Info	y Day Summary: passed		
TPkg_Station::SD Motorist Arrives Sunn Summary Info Total number of SDs used:	y Day Summary: passed 1 1		
TPkg_Station::SD Motorist Arrives Sunny Summary Info Total number of SDs used: Total number of SD instances in test:	y Day Summary: passed 1 1		
TFkg_station::SD Motorist Arrives Surny Summary Info Total number of SDs used: Total number of SD instances in test: Total number of executed SD instances:	y Day Summary: passed 1 1 1		
TPkg_Station::SD Motorist Arrives Sunny Summary Info Total number of SDs used: Total number of SD instances in test: Total number of PASSED SD instances: Total number of PASSED SD instances:	y Day Summary: passed 1 1 1 1 1 1 (100%)		

Test Coverage

	ult of Test Case - Microsoft Internet Explo Favorites Tools Help	rer 💶 🖸
Geek - C) · 🖹 😰 🏠 🔎 Search 🤺 Favo	rites 😸 🖾 •
Address 🛃 C_Fink	hed_rpy\TCon_StationSD_tc_0_TestCaseCoverag	
Links 👸 Unyte On	ine Meetings 🛛 AUTHORize - Login	🔛 Snagk 🧮 💆
covered	stopPump	2
covered	startPump	
covered	recordImage	
covered	enablePump	
covered	updatePrice	
covered	resetFrice	
covered	setFuelCost	
not covered		
EventRecept	tions	
covered	requestFuel	
covered	activatePump	
covered	releaseTrigger	
covered	pullTrigger	
covered	resetPump	
covered	selectFuelType	
covered	imageConfirmed	
covered	registrationOK	
not covered	registrationBad	
Statechart:	StatechartOfStation	
covered	ROOT.Idle	State
covered	ROOT.WaitingForAuthorization	State
covered	ROOT.PumpActive	State
covered	ROOT.PumpActive.NotPumping	State
•		My Computer

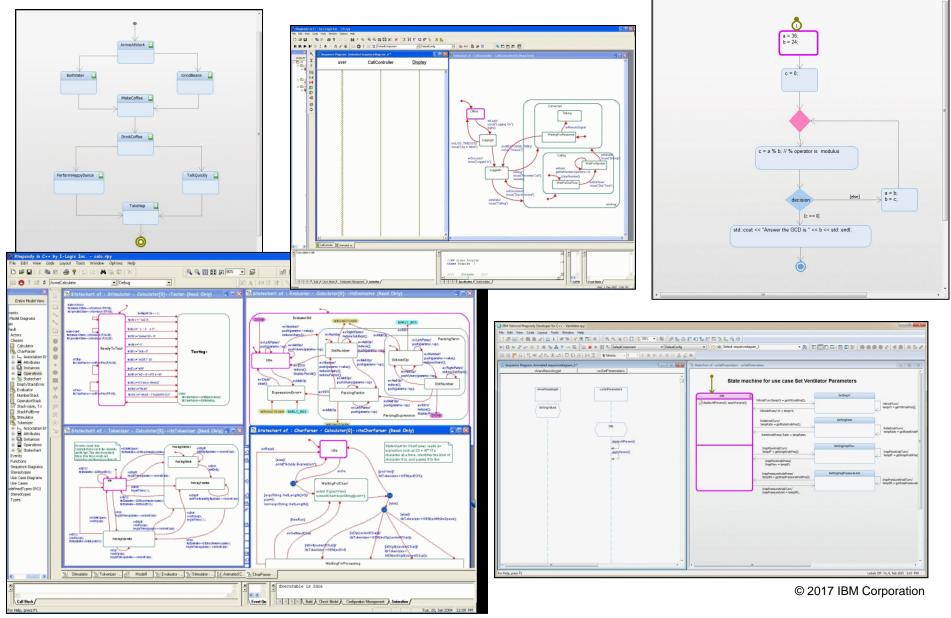
Test Outcomes

© 2017 IBM Corporation

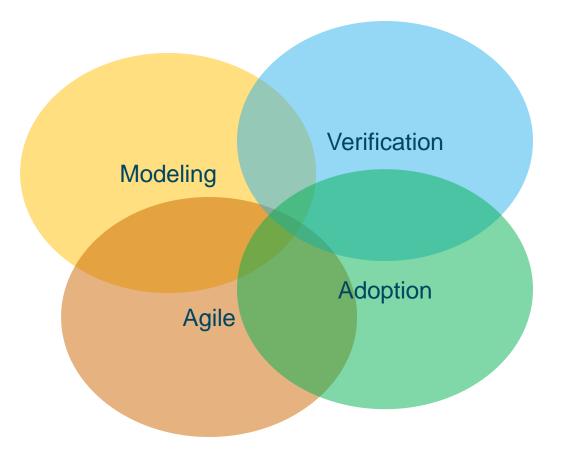


Test Architecture (Auto-generated)

IBM Analytics



Tooling Couples Views with Model Repository



Computable Models

Key Topics

Effective MBSE: Adoption

Determine organizational objectives Discover as-is process Identify issues & problems

Phase deployment of plan into the enterprise, including training, mentoring and metrics

Enact

Assess

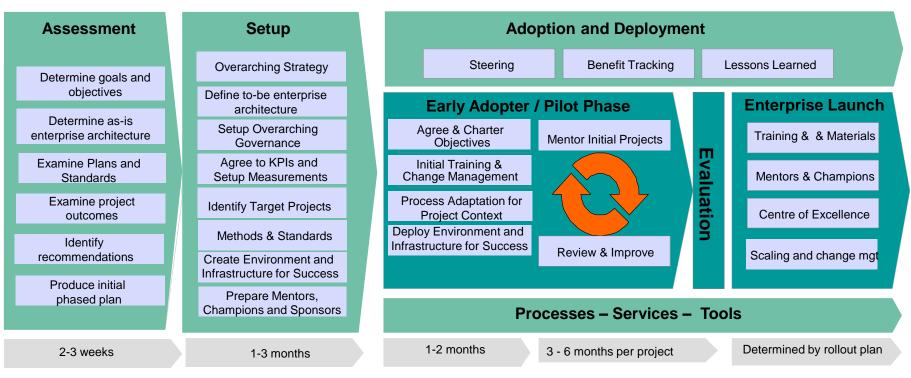
Plan

Architect

Pilot

Enact in a small controlled project Measure success Adapt approach based on evidence Define steps to incrementally adopt

Determine goal-as-is gap Identify future needs


Define to-be process,

practices, and tools

Specific metrics to dynamically measure ongoing success

M Corporation المر

Approach for Adoption: Engineering Capability Improvement

Evidence:

- Interviews
- Internal standards
- Project data

